Description

Pizzato Elettrica widens its own range of products with the new HP-HC series of safety hinge switches, where safety and style are melted in one single product.
The electrical switch is completely integrated in the mechanical hinge, to result practically invisible to an inexpert eye. This guarantees a higher safety because a switch hard to identify is consequently also more difficult to defeat. The assembly without visible screws and the pleasant line, make the switch perfectly integrated also with guards of modern design machinery. In order to complete the offer complementary hinges with purely mechanics functions are available.

Adjustment of the operating point

The operating point of the switches can be set with a flatblade screwdriver.
The operating point regulation allows the setting possibility for large guards. After the setting, it's always necessary to seal the hole with the supplied safety seal plug.

Integrated M12 connector

Versions with connection from the top or the bottom are available with integrated M12 connector.
The application of versions with connector allows a faster wiring when it's necessary to move guards from test line to final user.

Protection degrees IP67 and IP69K
D \quad These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required. Special measures also allow devices to be used even in machines which are subjected to washing with high pressure warm water jets. In fact these devices pass the IP69K test according to ISO 20653, using jets of water to 100 atmospheres at a temperature of $80^{\circ} \mathrm{C}$.

Cable with connector at the back

The version with a rear cable and M12 connector is the best combination between aesthetics and connection ease. When machineries have to be assembled by the final customer, this solution allows to hide the wiring and at the same time to easily connect or disconnect it from inside the machinery.

Variations of the activation base angle

New versions with the switch activation angle equal to a multiple of 15° (e.g. 45° or 90°) are available on request.
The different activation angle does not invalidate the possibility to adjust the operating point through the switch adjusting screws. The variation of the operating angle does not alter the switch maximum mechanical travel.

Opening angle up to 180°

The mechanical design of the switch allows the application also on protections up to 180° opening angle.

Versions for glass or polycarbonate doors

It's available a variation of the switch
 shape specifically designed for glass and polycarbonate doors without frame.
The wider supporting arm and the spaced fixing points facilitate the installation and prevent the cracking caused by holes too near the guard edge.
However, it is necessary to verify that the door mechanical stop is not performed by the switch.

Additional hinges

To complete installation, various types of additional hinges are available, varying in numbers depending on the protection guard weight.
These hinges keep the same aesthetics and without the electrical part their price is lower.

Application examples

- Switch without supports
- Rear fixing
- Cable output, rear

- Switch with angular supports for profiles with - Switch with plane supports for profiles with slots
- Fixing with internal screws
- Connector output, bottom
slots
- Fixing with front screws.
- Cable output, bottom

Closed door

Open door

- Direct fixing to the polycarbonate plate
- Switch without supports
- Fixing with internal screws
- Connector output, rear.

Selection diagram

ADDITIONAL HINGES

HC LL

HC AA

HC AB
product option

Code structure

HC AA

Additional hinges ($\mathrm{H} \times \mathrm{L}$)
HC AA $100.6 \times 49 \mathrm{~mm}$
HC AB $100.6 \times 79 \mathrm{~mm}$
HC LL $65 \times 44.5 \mathrm{~mm}$

Main features

- Metal housing, cable output at top, bottom or rear
- 4 integrated cable types available
- Versions with M12 connector
- Protection degrees IP67 and IP69K
- 9 contact blocks with positive opening Θ
- Additional hinges without contacts

Markings and quality marks:

IMQ approval:
UL approval:
CCC approval:
EAC approval:

CA02.03746 E131787
2013010305647255
RU C-IT ДМ94.B. 01024

Technical data

Housing

Metal housing, baked powder coating
Version with integrated cable, length 2 m , other lengths on request.
Versions with integrated M12 connector, 5 or 8 poles
Protection degree:
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct
high-pressure and high-temperature jets)

General data

For safety applications up to: SIL 3 acc. to EN 62061
Mechanical interlock, not coded:
PL e acc. to EN ISO 13849-1
type 1 acc. to EN ISO 14119
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
5,000,000 for NC contacts

Max. actuation speed:
20 years
See table on page 56
1200 operating cycles ${ }^{1} /$ hour

Min. actuation speed:
1 million operating cycles ${ }^{1}$

Mounting position:
$90^{\circ} / \mathrm{s}$
2%
Max. axial load:
any
Max. radial load:
Tightening torque, M5 screws:
1500 N (HP AA) / 750 N (HP AB)
$1000 \mathrm{~N}(\mathrm{HP} \mathrm{AA}) / 500 \mathrm{~N}(\mathrm{HP} \mathrm{AB})$
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in

EN 60947-5-1. After 1 million operating cycles the operating point increases by 1.8°.

Electrical data

Rated impulse withstand voltage Uimp:
Conditional short circuit current:

4 kV

1000 A acc. to EN 60947-5-1
Pollution degree:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, ISO 20653, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No. 14.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

A If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements on page 297.
\Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads. According to EN 60204-1, versions with 8-pin 2NO+2NC M12 connector can be used only in PELV circuits.

Characteristics approved by IMO

```
Rated insulation voltage (Ui): 250 Vac
Conventional free air thermal current (lth): 10 A (1-2 contacts) / 6 A (2-3 contacts)
/ 4A(4 contacts or5-pin M12 connector)
Protection against short circuits (fuse): 10 A (1-2 contacts)/6A (2-3 contacts)/
    4A (4 contacts or 5-pin M12 connector), gG type
Rated impulse withstand voltage ( ( ( imp): 4 kV
Protection degree of the housing: IP67
MA terminals (saddle clamps)
Pollution degree:
Utilization category:
Operating voltage (Ue): }\quad250\textrm{Vac}(50\textrm{Hz})/24 Vdc (with connector
Operating current (le): }\quad3\textrm{A}/2\textrm{A}\mathrm{ (with connector)
Forms of the contact element: }X,Y,X+Y,X+X,Y+Y,Y+Y+X,X+X+Y,X+X+Y+
Positive opening of contacts on contact blocks 50A,50C,50D,50F, 50G,50M,
51A, 51C, 51D, 51F, 51G, 51M, 52A, 52C, 52D, 52F, 52G, 52M, 53A, 53C, 53D,
53F, 53G, 53M
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009,
fundamental requirements of the Low Voltage Directive 2006/95/EC.
```

Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories	R300 pilot duty ($28 \mathrm{VA}, 125-250 \mathrm{Vdc}$) B300 pilot duty (360VA, 120-240 Vac) (1-2-3 cont.) C300 pilot duty ($180 \mathrm{VA}, 120-240 \mathrm{Vac}$) (4 cont.)
Data of housing type 1, 4X "indoor use only", 12.	
Housing data for vers	with 1-2 contacts and type N cable type 1, 4X "indoor use only"

Please contact our technical service for the list of approved products.

Utilization temperatures and electrical data

Dimensional drawings							All measures in the drawings are in mm		
Contact type:\mathbf{L} $=$ slow action $\mathbf{L O}$ $=$ slow action overlapped	2 m cable, bottom			2 m cable, top			2 m cable, rear		
slow action Loverlapped Contact blocks									
52 C L	HP AA052C-2SN	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$	HP AA052C-2AN	Θ	1NO+1NC	HP AA052C-2PN	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$
52D L	HP AA052D-2SN	Θ	2 NC	HP AA052D-2AN	Θ	2 NC	HP AA052D-2PN	Θ	2 NC
52 F L	HP AA052F-2SN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$	HP AA052F-2AN	Θ	1NO+2NC	HP AA052F-2PN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$
52 M L	HP AA052M-2SN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA052M-2AN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA052M-2PN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$
53C L0	HP AA053C-2SN	\odot	$1 \mathrm{NO}+1 \mathrm{NC}$	HP AA053C-2AN	\odot	1NO+1NC	HP AA053C-2PN	\odot	$1 \mathrm{NO}+1 \mathrm{NC}$
53F L0	HP AA053F-2SN	Θ	1NO+2NC	HP AA053F-2AN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$	HP AA053F-2PN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$
53M Lo	HP AA053M-2SN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA053M-2AN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA053M-2PN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$
Min. force	0.3 Nm	m ¢)		0.3 Nm	m ()		$0.3 \mathrm{Nm}(0$	m ()	
Travel diagrams	page 59			page 59			page 59		

Contact type:	M12 connector, bottom	M12 connector, top	cable (0.2 m) and M12 connector, rear
$\begin{aligned} \hline \mathbf{L} & =\text { slow action } \\ \mathbf{L O} & =\text { slow action } \end{aligned}$ overlapped Contact blocks			
52C L	HP AA052C-KSM $\quad \Theta$ 1NO+1NC	HP AA052C-KAM $\quad \Theta$ 1NO+1NC	HP AA052C-0.2PM $\quad \rightarrow$ 1NO+1NC
52D L	HP AA052D-KSM $\quad \Theta$ 2NC	HP AA052D-KAM Θ 2NC	HP AA052D-0.2PM \quad 2NC
52 F L	HP AA052F-KSM $\quad \Theta 1 \mathrm{NO}+2 \mathrm{NC}$	HP AA052F-KAM $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	HP AA052F-0.2PM \quad 1NO+2NC
52 M -	HP AA052M-KSM $\quad \Theta$ 2NO+2NC	HP AA052M-KAM \quad 2NO+2NC	HP AA052M-0.2PM \quad 2NO+2NC
53C L0	HP AA053C-KSM \quad 1NO+1NC	HP AA053C-KAM Θ 1NO+1NC	HP AA053C-0.2PM Θ 1NO+1NC
53F L0	HP AA053F-KSM $\quad \Theta$ 1NO+2NC	HP AA053F-KAM \quad 1NO+2NC	HP AA053F-0.2PM \quad 1NO+2NC
53 M LO	HP AA053M-KSM $\quad \Theta$ 2NO+2NC	HP AA053M-KAM $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	HP AA053M-0.2PM \quad 2NO+2NC
Min. force	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$
Travel diagrams	page 59-group 1	page 59-group 1	page 59-group 1

[^0]
Versions for glass or polycarbonate doors - Dimensional drawings

Contact type:
L $=$ slow action LO slow action overlaped

Contact type:	M12 connector, bottom	M12 connector, top	cable (0.2 m) and M12 connector, rear
$\begin{array}{\|c\|c} \hline \mathbf{L} & =\text { slow action } \\ \mathbf{L O} & =\text { slow action } \\ & \text { overlapped } \end{array}$ Contact blocks			
52C L	HP AB052C-KSM $\quad \Theta$ 1NO+1NC	HP AB052C-KAM $\quad \rightarrow$ 1NO+1NC	HP AB052C-0.2PM $\quad \Theta$ 1NO+1NC
52D L	HP AB052D-KSM $\quad \Theta$ 2NC	HP AB052D-KAM $\quad \Theta$ 2NC	HP AB052D-0.2PM $\quad \Theta$ 2NC
52 F L	HP AB052F-KSM $\quad \Theta$ 1NO+2NC	HP AB052F-KAM $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	HP AB052F-0.2PM $\quad \Theta 1 \mathrm{NO}+2 \mathrm{NC}$
52 M -	HP AB052M-KSM $\quad \Theta$ 2NO+2NC	HP AB052M-KAM $\quad \Theta$ 2NO+2NC	HP AB052M-0.2PM $\quad \Theta$ 2NO+2NC
53C L0	HP AB053C-KSM $\quad \Theta$ 1NO+1NC	HP AB053C-KAM $\quad \rightarrow$ 1NO+1NC	HP AB053C-0.2PM \quad 1 1NO+1NC
53F LO	HP AB053F-KSM $\quad \Theta$ 1NO+2NC	HP AB053F-KAM $\quad \Theta$ 1NO+2NC	HP AB053F-0.2PM $\quad \Theta$ 1NO+2NC
53M LO	HP AB053M-KSM $\quad \Theta$ 2NO+2NC	HP AB053M-KAM Θ 2NO+2NC	HP AB053M-0.2PM $\quad \Theta$ 2NO+2NC
Min. force	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$
Travel diagrams	page 59-group 1	page 59-group 1	page 59-group 1

[^1] hinge does not guarantee the correct operation of the safety device.

| HCAA |
| :---: | :---: |

Travel diagrams

Contact blocks	Group 1
$\begin{aligned} & 53 \mathrm{C} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned} \dot{f}--{ }^{\prime}$	$\underbrace{0}_{1^{\circ}} \quad \frac{3}{0}^{\circ} \quad 7^{7^{\circ}}$
$\begin{aligned} & 53 \mathrm{~F} \\ & { }_{1 \mathrm{NO}+2 \mathrm{NC}} \end{aligned} \quad \neq-\mathrm{F}^{-1}$	$\underbrace{0}_{1^{\circ}} 3^{3^{\circ}} \quad \oplus^{7^{\circ}} \quad 180^{\circ}$
$\begin{aligned} & 53 \mathrm{M} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned} y^{\prime}-y^{-y^{\prime}}$	$\underset{1^{\circ}}{0-3^{\circ}} \quad \Theta 7^{\circ} \quad 180^{\circ}$

The contact operating point indicated in the travel diagrams can be adjusted from 0° to $+4^{\circ}$.

Accessories

Article
VF AC7032

Protection cap of regulation screw The plug is supplied with every hinge and must always be inserted after the operating point regulation.
In case of loss or damage, the cap can be ordered separately.

Max. forces and loads HP AA

Admitted max. loads, independent of utilization conditions.

Doors with one safety hinge
$\mathrm{F}_{\text {max } .}(\mathrm{N})=25,000 / \mathrm{D}(\mathrm{mm})$

Legend

Doors with one safety hinge and one additional hinge

Doors with one safety hinge and two additional hinges

[^2]

Legend	
$F_{\text {max }}$	Force exercised by the door weight (N)
D	Distance from the door barycentre to the hinge axis (mm)
A	Safety hinge
B	Additional hinge

Fixing plates

Fixing screws for profile not supplied.

VF SFH1-C | Couple of angular supports for HP AA and |
| :---: |
| HC AA supplied with fixing screws for switch |

Description

Pizzato Elettrica widens its own range of products with the new HX series of safety hinge switches, where safety and style are melted in one single product.
The electrical switch is completely integrated in the mechanical hinge, to result practically invisible to an inexpert eye. This guarantees a higher safety because a switch hard to identify is consequently also more difficult to defeat. The assembly without visible screws and the pleasant line, make the switch perfectly integrated also with guards of modern design machinery. The hinge-shaped safety switches of the HX series, being made of stainless steel, can be used in any environment where particular attention is required for cleanliness and hygiene, therefore they are suitable for various applications ranging from the food to the pharmaceutical sectors, as well as the chemical or marine sector.

Maximum safety with a single device

Constructed with redundant electronic technology, the HX BEE1 series hinge switches make it possible to create circuits having maximum PL e and SIL 3 safety levels by installing just one device on the protection. This avoids expensive wiring on the field and allows quicker installation. Inside the panel, the two electronic safety outputs must be connected to a safety module with OSSD inputs or to a safety PLC.

Connection of several switches in series

D C.ESL One of the most relevant features $\begin{aligned} & \text { of the HX line is the optional con- }\end{aligned}$ nection in series of several switches, up to a maximum number of 32 devices, while maintaining the maximum PL e safety level prescribed by the EN 13849-1 standard and the SIL 3 safety level according to the EN 62061 standard.
This connection method is permitted in safety systems which, at the end of the chain, feature a safety module evaluating the outputs of last HX switch.
The fact that the PL e safety level can be maintained even with 32 switches connected in series indicates the presence of an extremely safe structure inside each individual device.

Series connection with other devices

The HX BEE1 series features two safe inputs and two safe outputs, which can be connected in series with other Pizzato Elettrica safety devices. This option allows the creation of safety chains containing various devices, for example the creation of circuits with connections in series, including stainless steel safety hinges (HX BEE1 series), transponder sensors (ST series) and door lock sensors (NG series), while maintaining maximum PL e and SIL 3 safety levels.

Adjustment of the operating point

The switches operating point can be regulated through a flat-blade screwdriver.
The operating point regulation allows the setting possibility for large guards. After the setting, it's always necessary to seal the hole with the supplied safety seal plug.

Cable with connector at the back

The version with a rear cable and M12 connector is the best combination between aesthetics and connection ease. This solution makes it possible to hide the wiring and, at the same time, easily connect or disconnect it from inside the machinery.

Pizzato Elettrica safety
module CS series

Variations of the activation base angle

New versions with the switch activation angle equal to a multiple of 15° (e.g. 45° or 90°) are available on request.

The different activation angle does not exclude the possibility of finely adjusting the operating point by means of the adjustment screw found in the switch. Any change in the base operating angle does not alter the maximum mechanical switch travel.

Opening angle up to 180°

The mechanical design of the switch allows the application also on protections up to 180° opening angle.

Protection degrees IP67 and IP69K

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required. Special measures also allow devices to be used even in machines which are subjected to washing with high pressure warm water jets. In fact these devices pass the IP69K test according to ISO 20653, using jets of water to 100 atmospheres at a temperature of $80^{\circ} \mathrm{C}$.

Materials

With this new series in AISI316L stainless steel, Pizzato Elettrica offers a range of devices suitable for any environment where particular attention is required for cleanliness and hygiene.
Accurate surface finish makes it possible for these devices to be used in various applications ranging from the food to the pharmaceutical sectors, as well as the chemical or marine sector.

For heavy duty applications

Specifically designed for heavy duty industrial applications, these hinges are made of precision cast materials with increased thickness and high strength mechanical characteristics. The maximum loads indicated in the technical data are those that the hinge supports with no lubrication, for one million opening and closing cycles, while maintaining its safety device characteristics with perfect efficiency.

With cable or connector

The electrical connection via integrated cable or M12 connector option makes the device suitable for the most diverse applications. The connector versions allow faster device replacement and installation, by making incorrect wiring connection impossible. The cable versions, on the other hand, offer the best value for money. Both cable and connector versions are available in mechanical or electronic contact block versions.

Three different output directions

Designed for flexibility, the HX series safety hinges are equipped with three different output directions for the electrical conductors. The "from bottom" or "from top" directions allow you to maintain the same output direction as the conductor, for both left- and rightfacing doors. The "from back" direction obtains the most aesthetic, clean, and hygienic result. All three electrical conductor output directions are available with output cables in various lengths or with M12 connector.

Additional hinges

To complete installation, various types of additional hinges are available, varying in numbers depending on the protection guard weight.
These hinges keep the same aesthetics and mechanical structure but, having no electrical part, they cost less.

Laser engraving

Pizzato Elettrica has introduced a new laser marking for stainless steel switches of the HX series.
Thanks to this new system which excludes the use of labels, markings on the products are indelible.

Mechanical or electronic contact blocks

Internally equipped with innovative concepts, the HX series safety switches can be supplied both with electromechanical safety contacts with positive opening, or with self monitoring redundant electronic safety outputs. This allows the customer to choose between the most cost-effective solution (mechanical contacts) or a maximum security solution (electronic outputs).

Four LEDs for immediate diagnosis

The versions with electronic contact block are equipped with four signalling LEDs. Each LED represents a specific hinge function, this greatly facilitates operating point adjustment via the immediate visual indication for the installer during the adjustment phase. There are also three separate LEDs available: one for input status, one for output status, and one for general device status. For serial applications, this independence enables identification of any interruptions in the safety chain and of any internal errors. All that in a straightforward way without needing to decode complex blinking sequences.

Selection diagram

ADDITIONAL HINGES

Code structure

Body and movable part dimensions	
B	$126 \times 76 \times 31 \mathrm{~mm}$
Contact blocks	
L22	2NO+2NC, slow action, closer
H22	2NO+2NC, slow action, overlapped
EE1	electronic contact block with LED 2 PNP safety outputs 1 PNP signalling output 2 PNP safety inputs

Connection type

0.2 cable length 0.2 m (available only for versions 0.2 PM)
0.5
cable length 0.5 m
...
2 cable length 2 m (standard)
...
10 cable length 10 m
\mathbf{K} with integrated connector
Other cable lengths on request.

Activation angle
0° activation angle (standard)
H15 15° activation angle
H30 30° activation angle
H45 45° activation angle
H60 60° activation angle
H75 75° activation angle
H90 90° activation angle

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Cable or connector type

black PVC cable, IEC 60332-1
M cable with M12 connector

Output direction, connections

S movable part at the right and bottom output
P movable part at the right and rear output
A movable part at the right and output at top
Q movable part at the left and rear output
(on request)

HX CB

Additional hinges

$126 \times 76 \times 31 \mathrm{~mm}$, movable part at the right
$126 \times 76 \times 31 \mathrm{~mm}$, movable part at the left

Main features

- AISI 316L stainless steel housing
- Protection degrees IP67 and IP69K
- Electronic contact block with LED
- Versions with M12 connector
- Additional hinges without contacts

In conformity with the requirements of:
Low Voltage Directive 2006/95/EC
Machinery Directive 2006/42/EC
EMC Directive 2004/108/EC
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1,
IEC 60204-1, EN 60204-1, EN ISO 14119,
EN ISO 12100, IEC 60529, EN 60529,
ISO 20653, IEC 61508-1, IEC 61508-2,
IEC 61508-3, EN ISO 13849-1,
EN ISO 13849-2, EN 62061 , EN 61326-1,
EN 61326-3-1, EN 61326-3-2, UL 508, CSA 22.2 No. 14

Markings and quality marks:

UL approval:
TÜV SÜD approval:
EAC approval:

E131787
Z10 140375157007
RU C-IT ДM94.B. 01024

Technical data

Housing

Metal housing, polished, AISI 316L stainless steel
Version with integrated cable, length 2 m , other lengths on request.
Versions with M12 connector
Versions with cable, length $0.2 \mathrm{~m}, \mathrm{M} 12$ connector
Protection degree:
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct
high-pressure and high-temperature jets)

General data

For safety applications up to:
Mechanical interlock, not coded:
Safety parameters HX B•22-•••
$\mathrm{B}_{10 \mathrm{~d}}$:
Safety parameters HX BEE1-•••
MTTF ${ }_{d}$:
$\mathrm{PFH}_{\mathrm{d}}$:
DC:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Mounting position:
Tightening torque, M6 screws:
M6 screws: $\quad 10 \ldots 12 \mathrm{Nm}$
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Electrical data (L22-H22 mechanical contact blocks)
Rated impulse withstand voltage Uimp: 4 kV

Conditional short circuit current:	1000
Pollution degree:	3

Electrical data (EE1 electronic contact block)
Rated operating voltage Ue:
Consumption at voltage Ue: <1W
Rated impulse withstand voltage Uimp: $\quad 1.5 \mathrm{kV}$
Resettable internal protection fuse: 1.1 A
Overvoltage category: III
Inputs IS1/IS2
Rated operating voltage Ue: 24 Vdc
Rated current consumption: 5 mA
OS1/OS2 safety outputs
Rated operating voltage Ue: 24 Vdc
Output type:
Utilization category:
Short circuit detection:
Protection against overcurrent:
Time of deactivation impulses on sate
safe outputs: < $300 \mu \mathrm{~s}$
Permissible capacitance between outputs: < 200 nF
Permissible cap. between output and ground: < 200 nF
O3 signalling output
Rated operating voltage Ue: 24 Vdc
Output type:
Utilization category:
Short circuit detection: No
Protection against overcurrent: Yes

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 1 acc. to EN ISO 14119
$5,000,000$ for NC contacts
4018 years
2.29E-11

High
20 years
see table on page 66
600 operating cycles ${ }^{1} /$ hour
1 million operating cycles ${ }^{1}$
90%
2%
any

1000 A acc. to EN 60947-5-1
3

PNP
OSSD, PNP
DC12; $U \mathrm{e}=24 \mathrm{Vdc} ; \mathrm{le}=0.25 \mathrm{~A}$
Yes
< 300 us

DC12; Ue=24Vdc; le=0.1A
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308 of the 2015-2016 catalogue.
§ Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads. According to EN 60204-1, versions with 8-pin M12 connector can be used only in PELV circuits.

Characteristics approved by UL

Utilization categories
R300 pilot duty ($28 \mathrm{VA}, 125-250 \mathrm{Vdc}$)
B300 pilot duty ($360 \mathrm{VA}, 120-240 \mathrm{Vac}$)
Data of housing type 1, 4X "indoor use only", 12.
Housing data for versions with 2 contacts and type N cable
type 1, 4X "indoor use only"
In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Characteristics approved by TÜV SÜD

Supply voltage: 24 Vdc
Rated operating current (max.): 0.25 A
Ambient temperature: $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Protection degree: IP67
PL, category: PL e, category 4
In conformity with standards: IEC 61508-1:2010 (SIL 3), IEC 61508-2:2010 (SIL 3), IEC 61508-3:2010 (SIL 3), IEC 61508-4:2010 (SIL 3), IEC 620611/ A1:2012 (SIL CL 3), EN ISO 13849-1:2008 (PL e, Cat. 4), EN 60947-5-1/ A1:2009, ISO 14119:2013
Please contact our technical service for the list of approved products.

Utilization temperatures and electrical data for L22 / H22 mechanical contact blocks

			Cable type N $9 \times 0.34 \mathrm{~mm}^{2}$	M12 connector 8 poles
	Cable, fixed installation		$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
	Cable, flexible installation		$-5^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
	Cable, mobile installation		1	1
	Thermal current Ith		3 A	2 A
	Rated insulation voltage Ui		250 Vac	30 Vac 36 Vdc
	Protection against short circuits (fuse)		3 A 500 V type gG	2 A 500 V type gG
		24 V	2 A	2 A
		125 V	0.4 A	1
		250 V	0.3 A	/
		24 V	3 A	2 A
		120 V	3 A	1
		250 V	3 A	1

Internal connections with cable

L22 / H22 mechanical contact blocks

cable colour	contacts
black black-white red	NC
red-white	
brown	
blue	
purple	

EE1 electronic contact block

cable colour	connection
brown	A1
red	IS1
blue	A2
red-white	OS1
black	O3
purple	IS2
black-white	OS2
purple-white	not connected

Utilization temperatures and electrical data for EE1 electronic contact block

| | Cable type N
 $8 \times 0.34 \mathrm{~mm}^{2}$ | M12 connector
 8 |
| :--- | :---: | :---: | :---: |

L22 / H22 mechanical contact blocks
EE1 electronic contact block

	pin	contacts		pin	connection
	1			1	A1
	2	NC		2	IS1
	3	NC		3	A2
	4	NC		4	OS1
	5	NO		5	O3
	6	N		6	IS2
	7			7	OS2
	8	NO		8	not connected
	/	1			

Legend	
A1-A2	supply
IS1-IS2	safety inputs
OS1-OS2	safety outputs
O3	signalling output
NC	normally closed contact
NO	normally open contact
$\underline{=}$	ground connection

To purchase a product with a movable part at the left replace P with Q in the codes shown above.
Example: HX BL22-2PN \rightarrow HX BL22-2QN

Additional hinges

Travel diagrams

The contact operating point indicated in the stroke diagrams
can be adjusted to $\pm 1^{\circ}$.
All measures in the diagrams are in degrees

[^3]
Complete safety system

The use of complete tested solutions means that the customer can be certain of the electrical compatibility between the ST series sensor and Pizzato Elettrica safety modules, thus ensuring greater reliability. In fact, these sensors have been tested for operation with the modules specified in the table shown on the side.

Switch	Compatible safety modules	Safety module output contacts		
		Instantaneous safety contacts	Delayed safety contacts	Signalling contacts
	CS AR-05••••	3NO	1	1NC
	CS AR-06••••	3NO	1	1NC
	CS AR-08••••	2NO	1	1
HX BEE1-•••	CS AT-0•••••	2NO	2NO	1NC
	CS AT-1•••••	3NO	2NO	/
	CS MP••••••		see page 243	
	CS MF••••••		see page 271	

Possible connection in series of several hinges in order to simplify the safety system wiring, after evaluating the outputs from the last hinge in the chain by means of a Pizzato Elettrica safety module (table for safety modules to be combined). Each HX switch is provided with a signalling output, which is activated when the respective guard is closed. This piece of information can be managed by a PLC, depending on the specific requirements of the system installed.

Possible connection in series of several hinges in order to simplify the safety system wiring, after evaluating the outputs from the last hinge in the chain by means of a safety module from Pizzato Elettrica CS MP series, which allows management of both safety and signalling functions.

Internal diagram

The side scheme shows the 4 logical functions interacting inside the switch.
Function f0 is a global function which deals with the device power supply and the internal tests which it cyclically undergoes.
The task of function f1 is to evaluate the status of the device inputs, whereas function f2 checks the opening of the guard. Function $f 3$ is intended to activate or deactivate the safety outputs and check for any faults or short circuits in the outputs.
The macro-function, which controls the above mentioned func-
tions, enables the safety outputs only in presence of active inputs with the actuator within the safe zone limits.
The status of each function is displayed by the corresponding LED (PWR, IN, ACT, LOCK, OUT), in such a way that the general device status becomes immediately obvious to the operator.

Series connection

To simplify serial connections, a series of M12 connectors are available that allow complete wiring.
This solution significantly reduces installation times, whilst maintaining the maximum PL e and SIL 3 safety levels.
For further information see page 290.

Accessories

Article	Description
VF AC7032	Protection cap of regulation screw
The plug is supplied with every hinge	
and must always be inserted after the	
operating point regulation.	
In case of loss or damage, the cap can	
be ordered separately.	

Fixing plates

Article	Description
VF SFH10-TX	Couple of stainless steel plane supports supplied with fixing screws for switch

Article	Description
VF SFH8	Mobile part cover in stainless steel

Max. forces and loads HX

Admitted max. loads, independent of utilization conditions.

Attention: Never exceed the loads listed above under any circumstances.
The loads have been verified by a fatigue test of one million operating cycles with a 90° opening angle.

Doors with one safety hinge $F_{\text {max }}(\mathrm{N})=50,000 / \mathrm{D}(\mathrm{mm})$

Doors with one safety hinge and one additional hinge
$F_{\max }(\mathrm{N})=400,000 / \mathrm{D}(\mathrm{mm})$

All measures in the drawings are in mm

Doors with one safety hinge and two additional hinges
$F_{\text {max. }}(N)=500,000 / D(\mathrm{~mm})$

[^4]
Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Selection diagram

product option
accessory sold separately

Code structure

article

Housing

FC metal, one conduit entry

Contact blocks

$331 \mathrm{NO}+1 \mathrm{NC}$, slow action
34 2NC, slow action

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors without cable gland (standard)

K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12 \mathrm{~mm}$
K50 M12 metal connector, 5 poles

Threaded conduit entry
M2 M20x1.5 (standard)
PG 11

Main features

- Metal housing, from one to three conduit entries
- Protection degree IP67
- 8 contact blocks available
- Stainless steel actuator
- Versions with M12 connector
- Versions with gold-plated silver contacts

Markings and quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
EAC approval:	RU C-IT ДM94.B.01024

Technical data

Housing

FD, FL and FC series: metal housing, baked powder coating.
Stainless steel actuator
FD, FC series - one threaded conduit entry: M20x1.5 (standard)
FL series - three threaded conduit entries: M20×1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

General data

For safety applications up to:
Mechanical interlock, not coded:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 1 acc. to EN ISO 14119
5,000,00 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
1 million operating cycles ${ }^{1}$
180° /s
2%
see pages 297-308

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:
Contact blocks 7, 9, 18:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20$)$
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data		Utilization category
	Thermal current (Ith):	
	Rated insulation voltage (Ui):	10 A

Description

These safety switches are ideal to control gates or doors protecting hazardous parts of machines without inertia. They are very sensitive and positively open the contacts after few degrees of rotation, sending an immediate stop signal. The head adjustable in 90° steps allows their installation in four different positions.
The metal housing and the stainless steel actuator allow this switch to be used even in hard environments where sedimented powder or dirty could block working of safety switches with separated actuator.

Orientable heads

Removing the four fastening screws, in all switches, it is possible to rotate the head in 90° steps. This allows you to use the same switch on both right- and left-facing door fronts.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Laser engraving

All devices are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

Application examples

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks $20,21,22,33,34$)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $7,9,18,20,21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products.

Extended temperature range

$-40^{\circ} \mathrm{C}$This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Adjustable operating point

When installing the device, you can adjust the contact operating point over the entire 360° range. By affixing the stud screw, you can check the correct activation angle adjustment, and quickly and easily adjust it if required. Once adjustment is complete, you can render the device tamper-proof against commonly used tools using the supplied lock pin.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc) A600 (720 VA, 120 ... 600 Vac)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in (0.8 Nm). In conformity with standard: UL 508, CSA 22.2 No. 14

How to read travel diagrams

IMPORTANT:

In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.

Temporary shaft locking (dowel provided).

Verify the operating point according to EN ISO 13857, adjust the operating point again if necessary

Selection diagram

Code structure

Main features

- Metal housing or technopolymer housing,
from one to two conduit entries
- Protection degree IP67
- 12 contact blocks available
- Versions with M12 connector
- Versions with gold-plated silver contacts
- Versions with stainless steel external metallic parts

Markings and quality marks:

IMO approval:	EG610 (FR-FX-FK series)
	EG609 (FM-FZ series)
UL approval:	E131787
CCC approval:	2007010305230013
	(FR-FX-FK series)
	2007010305229998
	(FM-FZ series)
EAC approval:	RU C-IT ДM94.B.01024

Technical data

Housing

FR, FX and FK series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation: \square
FM and FZ series: metal housing, baked powder coating.
FR, FM series - one threaded conduit entry: M20×1.5 (standard)
FK series: one threaded conduit entry: M16x1.5 (standard)
FX series - two knock-out threaded conduit entries: M20×1.5 (standard)
FZ series - two threaded conduit entries: M20x1.5 (standard)
Protection degree: IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

General data

For safety applications up to:
SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
Mechanical interlock, not coded:
type 1 acc. to EN ISO 14119
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$: 5,000,00 for NC contacts
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour

Min. actuation speed:
1 million operating cycles ${ }^{1}$
180%
2\%s
see pages 297-308
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks 5, 6, 7, 9, 14, 18, 66 :

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
. If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data			Utilization category				
	Thermal current (Ith): Rated insulation voltage (Ui): Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33,34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)				
			Ue (V) 250 400 500 le (A) 6 4 1 Direct current:				
			Direct current: DC13 Ue (V) 24 125 le (A) 6 1.1			$\begin{aligned} & 250 \\ & 0.4 \end{aligned}$	
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)				
			$\mathrm{Ue}(\mathrm{V})$	24	120	250	
			le (A)	4	4	4	
			Direct current: DC13				
			$\mathrm{Ue}(\mathrm{V})$	24	125	250	
			le (A)	4	1.1	0.4	
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ Ue (V) 24				
			$\text { le }(A) \quad 2$				
			Direct current: DC13				
			$\mathrm{Ue}(\mathrm{V})$	24			
			le (A)	2			

Description

These safety switches are ideal to control gates or doors protecting hazardous parts of machines without inertia. They are very sensitive and positively open the contacts after few degrees of rotation, sending an immediate stop signal. The head adjustable in 90° steps allows their installation in four different positions. Available with technopolymer or metal housings, with protection degree IP67. Its special shape allows to use this type of switches also in those areas where dust and dirt could block working of normal safety switches with separate actuator.

Orientable heads

Removing the four fastening screws, in all switches, it is possible to rotate the head in 90° steps. This allows you to use the same switch on both right- and left-facing door fronts.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Application examples

Extended temperature range

This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Adjustable operating point

When installing the device, you can adjust the contact operating point over the entire 360° range. By affixing the stud screw, you can check the correct activation angle adjustment, and quickly and easily adjust it if required. Once adjustment is complete, you can render the device tamper-proof against commonly used tools using the supplied lock pin.

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks $20,21,22,33,34$)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,14,18,20,21,22,33,34,66$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Characteristics approved by UL

Utilization categories O 300 ($69 \mathrm{VA}, 125$... 250 Vdc) A600 (720 VA, $120 \ldots 600 \mathrm{Vac})$
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products

Dimensional drawings			All measures in the drawings are in mm
Contact type:$\begin{aligned} & \hline \mathbf{R}=\text { snap action } \\ & \hline \mathbf{L}=\text { slow action } \\ & \hline \mathbf{L O}=\text { slow action } \\ & \text { overlapped } \\ & \mathbf{L S}=\text { slow action } \\ & \text { shifted } \end{aligned}$	Technopolymer housing	Technopolymer housing	Technopolymer housing
5 R	FR 596-M2 Θ 1NO+1NC	FX 596-M2 Θ 1NO+1NC	
6 L	FR 696-M2 Θ 1NO+1NC	FX 696-M2 Θ 1NO+1NC	
7 L0	FR 796-M2 Θ 1NO+1NC	FX 796-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	
9 L	FR 996-M2 Θ 2NC	FX 996-M2 Θ 2NC	
14 LS	FR 1496-M2 Θ 2NC	FX 1496-M2 Θ 2NC	
18 L	FR 1896-M2 Θ 1NO+1NC	FX 1896-M2 Θ 1NO+1NC	
20 L	FR 2096-M2 Θ 1NO+2NC	FX 2096-M2 Θ 1NO+2NC	
$21 \square$	FR 2196-M2 Θ 3NC	FX 2196-M2 Θ 3nC	
$22 \square$	FR 2296-M2 Θ 2NO+1NC	FX 2296-M2 Θ 2NO+1NC	
$33 \square$	FR 3396-M2 Θ 1NO+1NC	FX 3396-M2 Θ 1NO+1NC	FK 3396-M1 Θ 1NO+1NC
$34 \square$	FR 3496-M2 \bigodot 2NC	FX 3496-M2 Θ 2NC	FK 3496-M1 \odot 2NC
66 L	FR 6696-M2 Θ 1NC	FX 6696-M2 Θ 1NC	
Min. force	$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$	$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$	$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$
Travel diagrams	page 304 - group 9	page 304 - group 9	page 304 - group 9

Contact type:$\begin{array}{rl\|l} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ & \text { overlapped } \\ \mathbf{L S} & =\text { slow action } \\ & \text { shifted } \end{array}$			Metal	housing	Metal housing		
R LO LS	action action action apped action act d				$\begin{gathered} \text { and } \\ m \end{gathered}$		
5	R	FM 596-M2	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 596-M2	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$
6	L	FM 696-M2	Θ	1NO+1NC	FZ 696-M2	Θ	1 $1 \mathrm{NO}+1 \mathrm{NC}$
7	L0	FM 796-M2	\odot	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 796-M2	\odot	$1 \mathrm{NO}+1 \mathrm{NC}$
9	\square	FM 996-M2	Θ	2 NC	FZ 996-M2	Θ	2NC
14	LS	FM 1496-M2	Θ	2 NC	FZ 1496-M2	Θ	2NC
18	L	FM 1896-M2	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 1896-M2	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$
20	\square	FM 2096-M2	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2096-M2	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$
21	\square	FM 2196-M2	Θ	3 NC	FZ 2196-M2		3NC
22	\square	FM 2296-M2	Θ	$2 \mathrm{NO}+1 \mathrm{NC}$	FZ 2296-M2	\odot	$2 \mathrm{NO}+1 \mathrm{NC}$
33	L	FM 3396-M2	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 3396-M2	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$
34	\square	FM 3496-M2	\bigcirc	2 NC	FZ 3496-M2	Θ	2nc
66	L	FM 6696-M2	Θ	1 NC	FZ 6696-M2	Θ	1NC
Min. force		$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$ page 304 - group 9			$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$ page 304-group 9		
Travel diagrams							

Dimensional drawings for actuators

Adjustment of the operating point

Temporary shaft locking (dowel provided)

Verify the operating point according to EN ISO 13857, adjust the operating point again if necessary.

Selection diagram

COND ITT ENTRIES

Code structure

Housing	
FR	technopolymer, one conduit entry
FM	metal, one conduit entry
FX	technopolymer, two conduit entries
FZ	metal, two conduit entries

Contact blocks	
$\mathbf{1 8}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{5}$	$1 \mathrm{NO}+1 \mathrm{NC}$, snap action
$\mathbf{6}$	1NO+1NC, slow action
$\mathbf{9}$	2 NC , slow action
$\mathbf{2 0}$	1NO+2NC, slow action
$\mathbf{2 1}$	3NC, slow action
$\mathbf{2 2}$	$2 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{3 3}$	1NO+1NC, slow action
$\mathbf{3 4}$	2NC, slow action
$\mathbf{6 6}$	1NC, slow action

Actuators

C1 slotted hole lever at the right
C2 straight slotted hole lever
C3 slotted hole lever at the left
C4 slotted hole lever at the right (without bend)
straight slotted hole lever (without bend)

	ent temperature
	$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors without cable gland or connector (standard)

K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm

K70 M12 plastic connector, 4 poles

Please contact our technical service for the complete list of possible combinations.

Threaded conduit entry

M2 M20×1.5 (standard)
M1 M16x1.5 (FR-FX housing only) PG 13.5

A PG 11 (FR-FX housing only)

Contact type

silver contacts (standard)

G silver contacts with $1 \mu \mathrm{~m}$ gold coating
FK 33C1-GM1 ${ }^{\text {antanes }}$

Housing

FK technopolymer, one conduit entry

Contact blocks

33 1NO + 1NC, slow action
34 2NC, slow action

Actuators

C1 slotted hole lever at the right
C2 straight slotted hole lever
C3
slotted hole lever at the left
C4
slotted hole lever at the right (without bend)
C5 straight slotted hole lever (without bend)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands
without cable gland (standard)
K24 cable gland for cables $\varnothing 5 \ldots \varnothing 10 \mathrm{~mm}$
K28
cable gland for cables $\varnothing 3 \ldots \varnothing 7 \mathrm{~mm}$

Threaded conduit entry

M1 M16×1.5 (standard)
PG 11

Contact type

silver contacts (standard)

G
silver contacts with $1 \mu \mathrm{~m}$ gold coating

Main features

- Metal housing or technopolymer housing, from one to two conduit entries
- Protection degree IP67
- 10 contact blocks available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Markings and quality marks:

IMQ approval:	EG610 (FR-FX-FK series)
	EG609 (FM-FZ series)
UL approval:	E131787
CCC approval:	2007010305230013
	(FR-FX-FK series)
	2007010305229998
	(FM-FZ series)
EAC approval:	RU C-IT ДM94.B.01024

Technical data

Housing

FR, FX and FK series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FM and FZ series: metal housing, baked powder coating.
FR, FM series - one threaded conduit entry: M20×1.5 (standard)
FK series: one threaded conduit entry: M16×1.5 (standard)
FX series - two knock-out threaded conduit entries: M20×1.5 (standard)
FZ series - two threaded conduit entries: M20x1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

General data

For safety applications up to:
Mechanical interlock, not coded:
SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119,
EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.

Positive contact opening in conformity with standards:

IEC 60947-5-1, EN 60947-5-1.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data		Utilization category
Thermal current (Ith): Rated insulation voltage (Ui): Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33,34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current:Ue (V) 250 $(50 \div 60 \mathrm{~Hz})$ le (A) 6 400 500 lirect current: DC13 Din 1 Ue (V) 24 125 250 le (A) 6 1.1 0.4
Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4 A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current:Ue (V) AC $(50 \div 60 \mathrm{~Hz})$ le (A) 24 4 120 lirect current: DC13 250 Diren Ue (V) 24 125 4 le (A) 4 1.1 0.4
	```2A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ Ue (V) $\quad 24$ le (A) $\quad 2$ Direct current: DC13 Ue (V) $\quad 24$ le (A) $\quad 2$

## Description

These safety switches are used to control gates or doors with hinge protecting hazardous parts of machines without inertia Easy to install, they do not need the interaction with the hinge of the guard. They are very sensitive and positively open the contacts after few degrees of rotation, sending an immediate stop signal.

## Orientable heads



Removing the four fastening screws, in all switches, it is possible to rotate the head in $90^{\circ}$ steps. This allows you to use the same switch on both right- and left-facing door fronts.

## Application examples




## Protection degree IP67



These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

## Extended temperature range

This range of switches is also available in a
special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

## Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc )

$$
\text { A600 (720 VA, } 120 \text {... } 600 \text { Vac }
$$

Data of housing type 1, 4X "indoor use only", 12, 13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible wire size AWG 12-14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm )

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products



Contact type: $\begin{aligned} \hline \mathbf{R} & =\text { snap action } \\ \hline \hline \mathbf{L} & =\text { slow action } \\ { } } & =\text { slow action } \\ & \text { closer } \end{aligned}$   Contact blocks			
5 R	FM 5C1-M2 $\Theta$ 1NO+1NC	FM 5C2-M2 $\Theta$ 1NO+1NC	FM 5C3-M2 $\Theta$ 1NO+1NC
6 L	FM 6C1-M2 $\Theta$ 1NO+1NC	FM 6C2-M2 $\Theta$ 1NO+1NC	FM 6C3-M2 $\Theta$ 1NO+1NC
9 L	FM 9C1-M2 $\Theta$ 2NC	FM 9C2-M2 $\Theta$ 2NC	FM 9C3-M2 $\Theta$ 2NC
18 LA	FM 18C1-M2 $\Theta$ 1NO+1NC	FM 18C2-M2 $\odot$ 1NO+1NC	FM 18C3-M2 $\Theta$ 1NO+1NC
20 L	FM 20C1-M2 $\Theta$ 1NO+2NC	FM 20C2-M2 $¢$ 1NO+2NC	FM 20C3-M2 $¢$ 1NO+2NC
21 L	FM 21C1-M2 $\Theta$ 3NC	FM 21C2-M2 $\Theta$ 3NC	FM 21C3-M2 $\rightarrow$ 3NC
22 L	FM 22C1-M2 $\Theta$ 2NO+1NC	FM 22C2-M2 $\Theta$ 2NO+1NC	FM 22C3-M2 $\Theta$ 2NO+1NC
33 L	FM 33C1-M2 $¢$ 1NO+1NC	FM 33C2-M2 $¢$ 1NO+1NC	FM 33C3-M2 $¢$ 1NO+1NC
34 L	FM 34C1-M2 $\Theta$ 2NC	FM 34C2-M2 $\Theta$ 2NC	FM 34C3-M2 $\Theta$ 2NC
66 L	FM 66C1-M2 $\Theta$ 1NC	FM 66C2-M2 $\Theta$ 1NC	FM 66C3-M2 $\Theta$ 1NC
Min. force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta$ )
Travel diagrams	page 304 - group 10	page 304 - group 11	page 304 - group 10


Contact blocks		
5 R	FM 5C4-M2 $\Theta$ 1NO+1NC	FM 5C5-M2 $\Theta$ 1NO+1NC
6 L	FM 6C4-M2 $\Theta$ 1NO+1NC	FM 6C5-M2 $\Theta$ 1NO+1NC
9 L	FM 9C4-M2 $\Theta$ 2NC	FM 9C5-M2 $\Theta$ 2NC
18 LA	FM 18C4-M2 $\odot$ 1NO+1NC	FM 18C5-M2 $\Theta$ 1NO+1NC
20 L	FM 20C4-M2 $\Theta$ 1NO+2NC	FM 20C5-M2 $\Theta$ 1NO+2NC
21 L	FM 21C4-M2 $\Theta$ 3NC	FM 21C5-M2 $\Theta$ 3NC
22 L	FM 22C4-M2 $¢$ 2NO+1NC	FM 22C5-M2 $¢$ 2NO+1NC
33 L	FM 33C4-M2 $\Theta$ 1NO+1NC	FM 33C5-M2 $¢$ 1NO+1NC
34 L	FM 34C4-M2 $\Theta$ 2NC	FM 34C5-M2 $\Theta$ 2NC
66 L	FM 66C4-M2 $\Theta$ 1NC	FM 66C5-M2 $\Theta$ 1NC
Min. force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 304 - group 10	page 304 - group 11


Contact type: $\begin{aligned} \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L A} & =\text { slow action } \\ & \text { closer } \end{aligned}$   Contact blocks			
5 R	FX 5C1-M2 $\Theta$ 1NO+1NC	FX 5C2-M2 $\Theta$ 1NO+1NC	FX 5C3-M2 $\Theta$ 1NO+1NC
6 L	FX 6C1-M2 $\Theta$ 1NO+1NC	FX 6C2-M2 $\Theta$ 1NO+1NC	FX 6C3-M2 $\Theta$ 1NO+1NC
9 L	FX 9C1-M2 $\Theta$ 2NC	FX 9C2-M2 $\Theta$ 2NC	FX 9C3-M2 $\Theta$ 2NC
18 LA	FX 18C1-M2 $\Theta$ 1NO+1NC	FX 18C2-M2 $\Theta$ 1NO+1NC	FX 18C3-M2 $\Theta$ 1NO+1NC
20 L	FX 20C1-M2 $\Theta$ 1NO+2NC	FX 20C2-M2 $\Theta$ 1NO+2NC	FX 20C3-M2 $\Theta$ 1NO+2NC
21 L	FX 21C1-M2 $\Theta$ 3NC	FX 21C2-M2 $\Theta$ 3NC	FX 21C3-M2 $\Theta$ 3NC
22 L	FX 22C1-M2 $\Theta$ 2NO+1NC	FX 22C2-M2 $\Theta$ 2NO+1NC	FX 22C3-M2 $\Theta$ 2NO+1NC
33 L	FX 33C1-M2 $\Theta$ 1NO+1NC	FX 33C2-M2 $\Theta$ 1NO+1NC	FX 33C3-M2 $\Theta$ 1NO+1NC
34 L	FX 34C1-M2 $\Theta$ 2NC	FX 34C2-M2 $\Theta$ 2NC	FX 34C3-M2 $\Theta$ 2NC
66 L	FX 66C1-M2 $\Theta$ 1NC	FX 66C2-M2 $\Theta$ 1NC	FX 66C3-M2 $\Theta$ 1NC
Min. force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 304 - group 10	page 304 - group 11	page 304 - group 10


Contact blocks		
5 R	FX 5C4-M2 $\Theta$ 1NO+1NC	FX 5C5-M2 $\Theta$ 1NO+1NC
6 L	FX 6C4-M2 $\Theta$ 1NO+1NC	FX 6C5-M2 $\Theta$ 1NO+1NC
9 L	FX 9C4-M2 $\Theta$ 2NC	FX 9C5-M2 $\Theta$ 2NC
18 LA	FX 18C4-M2 $\Theta$ 1NO+1NC	FX 18C5-M2 $\Theta$ 1NO+1NC
20 L	FX 20C4-M2 $\Theta$ 1NO+2NC	FX 20C5-M2 $\Theta$ 1NO+2NC
21 L	FX 21C4-M2 $\Theta$ 3NC	FX 21C5-M2 $\Theta$ 3NC
22 L	FX 22C4-M2 $\Theta$ 2NO+1NC	FX 22C5-M2 $\Theta$ 2NO+1NC
33 L	FX 33C4-M2 $\Theta$ 1NO+1NC	FX 33C5-M2 $\Theta$ 1NO+1NC
34 L	FX 34C4-M2 $\Theta$ 2NC	FX 34C5-M2 $\Theta$ 2NC
66 L	FX 66C4-M2 $\Theta$ 1NC	FX 66C5-M2 $\Theta$ 1NC
Min. force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 304 - group 10	page 304 - group 11






[^0]:    Attention! The safety hinge switch can be combined together exclusively with one or more Pizzato Elettrica hinges (series HP or HC). The use of whichever other hinge does not guarantee the correct operation of the safety device.

[^1]:    Attention! The safety hinge switch can be combined together exclusively with one or more Pizzato Elettrica hinges (series HP or HC). The use of whichever other

[^2]:    The 2D and 3D files are available at www.pizzato.com

[^3]:    Legend
    Closed contact /Outputs OS1, OS2, O3 active
    $\square$ Open contact /Outputs OS1, OS2, O3 not active
    Positive opening travel

[^4]:    Legend
    Force exercised by the door weight ( N )
    Distance from the door barycentre to the hinge axis (mm)
    Safety hinge
    Additional hinge

