

Technical concepts page 157

Position switches FD / FL series
page 159 / 165

C) Product code exten- ATEX/EPL category									
Category	Zone	EPL	Approvals	sion	M2/Mb	2G/Gb	2D/Db	36/Gc	3D/Dc
$\begin{aligned} & \text { 2G } \\ & \text { M2 } \end{aligned}$	$\begin{gathered} 1 \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { Gb } \\ & \text { Mb } \end{aligned}$	(Ex) II 2G Ex ia IICT6 Gb [8] I M2 Exial Mb	-EX7	\square	\square	-	\square	-
Position switches FM series					page 171				
23.10 Product code exten- ATEX/EPL category									
Category	Zone	EPL	Approvals	sion	M2/Mb	6/Gb	2D/Db	3G/Gc	3D/Dc
$\begin{aligned} & \text { 2G } \\ & \text { M2 } \end{aligned}$	$\begin{gathered} 1 \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { Gb } \\ & \text { Mb } \end{aligned}$	(Ex) II 2G Ex ia IIC T6 Gb (Ex I M2 Ex ial Mb	-EX7	■	\square	-	\square	-

Position switches FD / FL series
page 177 / 183

Prewired position switches FA series
page 189

Category	Zone	EPL	Approvals	Product code extension	ATEX/EPL category					
					M2/Mb	2G/Gb	2D/Db	3G/Gc	3D/Dc	
$\begin{aligned} & \text { 3D } \\ & \text { 3G } \end{aligned}$	$\begin{gathered} 22 \\ 2 \end{gathered}$	$\begin{aligned} & \text { Dc } \\ & \text { Gc } \end{aligned}$	§ $\varepsilon_{x} \\| 3$ Extc IIICT $80^{\circ} \mathrm{CDc}$ (Ex) II 3G Ex nC IICT6 Gc	-EX5	-	-	-	\square	\square	

Position switches FD / FL series
page 193 / 199

Accessories
page 205

ATEX Directive

The ATEX mark (Atmospheres Explosives) refers to two European directives concerning the risk of deflagration in potentially explosive atmospheres:

- ATEX 94/9/EC: concerns the requirements for electrical and non-electrical equipment used in potentially explosive environments. According to this directive the manufacturer has to comply with the provided requirements and mark the articles in conformity with particular categories
- ATEX 99/92/EC: regards the minimum safety and sanitary requirements that the user has to satisfy during the activity in potentially explosive environments.
These directives determine the requirements for the safety and health protection of people, animals and property and carry several procedures for the conformity demonstration of equipment to the directive requirements.

Classification of potentially explosive atmospheres.

A potentially explosive atmosphere is an atmosphere that could become explosive according to the local conditions of work. Usually it consists in environments where it is present a mixture of air and flammable substances in the form of gas, smog, steams and dusts.
The ATEX 99/92/EC directive defines for two types of explosive atmosphere, depending on the presence in the zone of gases or combustible dusts. Each area exposed to these types of explosive atmospheres is classified in three zones, according to the frequency and duration of the explosive atmosphere. For atmospheres with explosive gas, areas are classified in zones 0,1 and 2 ; for atmosphere with explosive dusts in zones 20, 21 and 22:

- Zone $\mathbf{0 / 2 0}$: a place where gas or combustible dust is present permanently. Constant danger. Equipment of minimum category 1 is required.
- Zone 1/21 : a place where gas or combustible dust is likely to occur during normal operation. Potential danger. Equipment of minimum category 2 is required.
Zone 2/22 : a place where gas or combustible dust is unlikely to occur or only for a short period. Lower danger. Equipment of minimum category 3 is required.
It's under the responsibility of the final user to choose and classify the different zones and to use suitable equipments.

Device categories acc. to ATEX directive and IEC standards

ATEX 94/9/CE directive distinguishes equipment between two main groups:

- Group I: equipment and systems for mining

Group II: equipment and systems for all other applications
Equipment of the group I is divided in two further categories according to the required protection degree:
Category M1: Equipment designed to assure a very high protection level
Category M2: Equipment designed to assure a high protection level
Equipment of the group II is divided in three further categories according to the required protection degree:

- Category 1: Equipment designed to assure a very high protection level (use in zones 0 and 20, 1 and 21, 2 and 22)
- Category 2: Equipment designed to assure a high protection level (use in zones 1 and 21, 2 and 22)
- Category 3: Equipment designed to assure a normal protection level (use in zones 2 and 22)

The relation between the EPL (Equipment Protection Levels) of the IEC 60079-0 standard, and the categories and applications of the ATEX directive are shown in the table below.

Table 1 - Classification of the environment and device according to ATEX directive and IEC 60079-0 standard

Environment characteristics				Equipment characteristics			
Environment of application	Flammable material	Potentially explosive atmosphere	Classification of potentially explosive atmospheres: ZONE	acc. to ATEX 94/9/EC		$\begin{gathered} \text { acc. to } \\ \text { IEC 60079-0 } \end{gathered}$	
				Required marking of the device: CATEGORY	Required marking of the device: GROUP	EPL	Required protection level
Mining				M1	I	Ma	very high
				M2		Mb	high
Above ground	Gas	It is present continuously, for long periods or frequently	0	1G	II	Ga	very high
		It is likely to occur	1	2G		Gb	high
		It is unlikely to occur or, if it does, is likely to do infrequently and for a short period only	2	3G		Gc	normal
	Dusts	It is present continuously, for long periods or frequently	20	1D		Da	very high
		It is likely to occur	21	2D		Db	high
		It is unlikely to occur or, if it does, is likely to do infrequently and for a short period only	22	3D		Dc	normal

Protection modes

In order to avoid an explosion caused by the electrical ignition of an explosive atmosphere, it is possible to take different type of precautions:

- Isolate the dangerous parts into housing in order to limit the explosion inside itself.
- Avoid contact between ignition sources and the potentially explosive atmosphere interposing solid, liquid or gaseous materials.
- Take measures in order to limit the generation of dangerous ignition sources, eliminating the possibility of faults or limiting the energy so it's not sufficient to cause the ignition.
For each modality several methods of protection have been developed and standardized, as listed in the following table.
Table 2 - Protection methods and reference standards

Protection method	Symbol	Engraving	Zone of utilization GAS	Zone of utilization DUSTS	IEC / EN standards
General requirements	/	/	0, 1, 2	20, 21, 22	$\begin{aligned} & \text { IEC 60079-0 } \\ & \text { EN 60079-0 } \end{aligned}$
Oil immersion		Exo	1.2	1	IEC 60079-6 EN 60079-6
Pressurization		$\begin{aligned} & \text { Expx } \\ & \text { Expy } \\ & \text { Expz } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-2 EN 60079-2
Powder filling	-1	Exq	1.2	1	$\begin{aligned} & \text { IEC 60079-5 } \\ & \text { EN 60079-5 } \end{aligned}$
Flameproof		Exd	1.2	1	IEC 60079-1 EN 60079-1
Increased safety		Exe	1.2	1	$\begin{aligned} & \text { IEC 60079-7 } \\ & \text { EN 60079-7 } \end{aligned}$
Intrinsic safety	\square	Ex ia Ex ib Ex ic	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-11 EN 60079-11
Encapsulation	t	Ex ma Ex mb Ex mo	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-18 EN 60079-18
Non sparking		ExnA ExnC ExnR	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	1	IEC 60079-15 EN 60079-15
Protective housing		Exta Extb Extc	1	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { IEC 60079-31 } \\ & \text { EN 60079-31 } \end{aligned}$
Optical radiation		Ex op	0,1,2	1	IEC 60079-28 EN 60079-28

Marking examples
Devices for places with presence of gas

〔欧 II 2G Ex ia IICT6 Gb
 (1)
 (2) (3) (4)

(1) Community marking
(2) Equipment group (see table 1)
(3) Protection category (see table 1)
(4) Prefix for safety devices according to the IEC / EN standards
(5) Protection mode (see table 2)
(6) Classification of gases (see table 4)
(7) Temperature class (see table 3)
(8) EPL according to IEC 60079-0 standard (see table 1)

Devices for places with presence of dusts

(Ex) II 3D Ex tc IIIC $\mathbf{T 8 0 ^ { \circ }}{ }^{\circ} \mathrm{CDc}$

(1) (2)

Community mav
(2) Equipment group (see table 1)
(3) Protection category (see table 1)
(4) Prefix for safety devices according to the IEC / EN standards
(5) Protection mode (see table 2)
(6) Classification of dusts (see table 5)
(7) Maximum surface temperature of the equipment
(8) EPL according to IEC 60079-0 standard (see table 1)

Temperature classes
Table 3

Class	T 1	T 2	T 3	T 4	T 5	T 6
Maximum surface temperature of the device	$450^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$

Classification of gases			Table 4 excerpt standard IEC 505	
	I	IIA	IIB	IIC
T1	methane	propane, methane, ethane, benzene, ammoniac, acetic acid, carbon monoxide, methanol, toluene	acrylonitrile	hydrogen
T2		ethanol, amyl acetate, butane	ethylene	acetylene
T3		naphtha, benzene, hexane	hydrogen sulfide	
T4		acetaldehyde	ethyl ether	
T5				
T6				carbon bisulphide
Classification of dust				Table 5
IIIA		IIIB		IC
combustible particles		non-conductive powder	conducti	ve powder

Main features

- Approvals:

Category 2G and M2

- Metal housing, one conduit entry
- Protection degree IP66
- Versions with gold-plated silver contacts

ATEX markings and quality labels:

C
(Ex) II 2G Ex ia IIC T6 Gb
$\varepsilon_{\chi x}$ I M2 Ex ia I Mb

Technical data

Housing

Metal housing, baked powder coating

One threaded conduit entry:
Protection degree:
M20x1.5
IP66 according to EN 60529 with cable gland having equal or higher protection degree

General data

General data	
Ambient temperature:	$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:	3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:	
F•••••-EX•	10 million operating cycles ${ }^{1}$
F• ••93-EX $, ~ F \bullet \bullet \cdot 78-E X \bullet, ~ F \bullet \bullet \bullet 8 \bullet-E X \bullet, ~ F \bullet \bullet \bullet 95-E X \bullet ~$	500.000 operating cycles ${ }^{1}$
F•••99-EX•, F•••R2-EX•	250.000 operating cycles ${ }^{1}$
Mounting position:	any

Mounting position:
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX•
F•••93-EX \bullet,F $\bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X$
F•••99-EX•, F•••R2-EX•
F•••95-EX•
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20,28:
Contact block 5

min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20$)$
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

In conformity with the requirements of:
ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2G	1	Gb	\Ex II 2G Ex ia IICT6 Gb	
M2	M2	Mb	$\varepsilon_{x} / 1$ M2 Ex ia I Mb	

Electrical data

Maximum current (ii): $\quad 2.1 \mathrm{~A}$
Maximum voltage (Ui):
Conditional short circuit current: Protection against short circuits:

30 Vdc
1000 A according to EN 60947-5-1
Pollution degree:
fuse 4 A 250 V type gG
§ This type of switches must be used only in intrinsic safety circuits in conformity with standard IEC 60079-11, EN 60079-11
$\widehat{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

Quality marks of the product:

© (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)

$$
\text { A600 (} 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text {) }
$$

Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14
Please contact our technical service for the list of approved products.

Adjustable levers

In the switches it is possible to adjust the lever with 10° steps for the whole 360° range. The positive movement transmission

Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Orientable heads

In all switches, it is possible to rotate the

Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger.

Code structure

Contact blocks
5 1NO+1NC, snap action
11 2NC, snap action
12 2NO, snap action
20 1NO+2NC, slow action
21 3NC, slow action
22 2NO+1NC, slow action

ATEX approval
Exx II 2G Ex ia IICT6 Gb
$\varepsilon_{x} /$ I M2 Ex ial Mb

Threaded conduit entry
M2 M20x1.5

Contact type
01 short plunger
02 roller lever
silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating

With external rubber gasket
Contact blocks

	With external rubber gasket	With external rubber gasket	Bistable	Rope switch for signalling
Contact blocks				
5 R	FD 521-M2-EX7 1NO+1NC	FD 525-M2-EX7 1NO+1NC	FD 541-M2-EX7 Θ 1NO+1NC	FD 576-M2-EX7 1NO+1NC
20 L	FD 2021-M2-EX7 1NO+2NC	FD 2025-M2-EX7 1NO+2NC		FD 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.08 Nm	0.14 Nm	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 3	page 238 - group 3	page 238 - group 4	page 238 - group 6

Code	Approvals	Category	Zone	EPL
-EX7	ε_{x} II 2G Ex ia IICT6 Gb	2G	1	Gb
	\&x 1 M2 Ex ial Mb	M2	M2	Mb

Position switches with revolving lever without actuator
Contact type:

| $\mathbf{R}=$ shap a action |
| :--- | :--- |
| $\mathbf{L}=$ slow action |

Regular head

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

Loose actuators					All measures in the drawings are in mm	
IMPORTANT: These loose actuators can be used with items of the FD series only.						
	Technopolymer roller $\varnothing 20$ mm	Adjustable round rod Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable fiber glass rod
Article	VF L31 Θ	VF L32 ${ }^{(2)}$	VF L33 ${ }^{(2)}$	VF L34	VF L35 $\Theta{ }^{(1)(2)}$	VF L36 ${ }^{(2)}$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$
	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
Article	VF L51 Θ	VF L52 Θ	VF L53 Θ	VF L56 $\underbrace{(2)}$	VF L57 Θ	
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$0.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	
Stainless steel rollers, $\varnothing 20$ mm						
Article	VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{(1)(2)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{(2)}$	VF L57-R24 Θ
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30°)

- (1) Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside.

If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
${ }^{(2)}$ If installed with switch FD $\bullet 58-M 2-E X 7$ (e.g. FD 558-M2-EX7, FD 658-M2-EX7...) the actuator could mechanically interfere with the housing of the switch. The interference could happen or not according to the actuator and the head fixing position.

Safety switches with separate actuator
All measures in the drawings are in mm

Contact type:	Switches with separate actuator	Switches with separate actuator and key release	Switches with manual mechanical delay
Contact blocks	Switches without actuator	Switches without actuator	Switches without actuator
20 L 28 L	FD 2093-M2-EX7 $\Theta 1$ NO+2NC	FD 2099-M2-EX7 FD 2899-M2-EX7 ¢ 1NO+2NC	FD 20R2-M2-EX7 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
Min. force Travel diagrams Gen. Cat. Safety	$\left.\begin{array}{c}10 \mathrm{~N}(18 \mathrm{~N} \Theta\end{array}\right)$	$30 \mathrm{~N}(40 \mathrm{~N} \Theta)$ page 140	$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$ page 132

Actuators

VF KEYF	VF KEYF1	VF KEYF2	VF KEYF3	VF KEYF7	VF KEYF8
Straight actuator	Angled actuator	Swivelling actuator	Actuator adjustable in two directions	Actuator adjustable in one direction	Universal actuator

IMPORTANT: These actuators can be used with items of the FD series only (e.g. FD 2093-M2-EX7).
Low level coded actuators according to EN ISO 14119.

Safety switches for hinges

Contact type:	
L = slow action	
Contact blocks	
20 L	FD 2095-M2-EX7 Θ 1NO+2NC
Min. force	0,15 Nm (0,4 Nm Θ)
Travel diagrams Gen. Cat. Safety	page 75

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Safety rope switch with reset for emergency stops

Contact type: $\mathbf{L}=\text { slow action }$			
20 L	FD 2078-M2-EX7 Θ 1NO+2NC	FD 2083-M2-EX7 Θ 1NO+2NC	FD 2084-M2-EX7 Θ 1NO+2NC
Min. force	initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta$)	initial 147 Nfinal $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 171-group 1	page 171-group 2	page 171-group 2

Accessories for rope installation

VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR03	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal head	Safety spring for transversal head	$\begin{aligned} & \text { Rope, } \varnothing 5 \\ & \text { mm. } \\ & 100 \mathrm{~m} \text { rolls } \end{aligned}$	Function indicator for ropes. Text "STOP"	Stainless steel pulley	Angular pulley, stainless steel

Application examples and max. rope length

© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL
-EX7	Exx II 2G Ex ia IIC T6 Gb	2G	1	Gb
	Ex 1 M 2 Ex ial Mb	M2	M2	Mb

Main features

- Approvals:

Category 2G and M2

- Metal housing, three conduit entries
- Protection degree IP66
- Versions with gold-plated silver contacts

ATEX markings and quality labels:

C
(Ex) II 2G Ex ia IIC T6 Gb
〔 $\underbrace{}_{x}$ I M2 Ex ia I Mb

Technical data

Housing

Metal housing, baked powder coating
Three threaded conduit entries:
M20x1.5
Protection degree:
IP66 according to EN 60529
with cable gland having equal or higher protection degree

General data

Ambient temperature:	$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:	3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:	

.
F•••••-EX•
10 million operating cycles ${ }^{1}$
F•••93-EX \bullet F $\bullet \bullet \cdot 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \bullet, F \bullet \bullet \bullet 95-E X \bullet 500.000$ operating cycles 1
Mounting position:
any
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX• 20,000,000
F•••93-EX \bullet F $\bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \quad 1,000,000$
F•••95-EX•
Mechanical interlock, not coded:
2,500,00
Tightening torques for installation:
type 1 according to EN ISO 14119
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact block 20:
Contact block 5:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times A W G 16)$
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

In conformity with the requirements of:

ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2G	$\mathbf{1}$	$\mathbf{G b}$	$\varepsilon_{x} /$ II 2G Exia IICT6 Gb	-EX7
M2	$\mathbf{M 2}$	$\mathbf{M b}$	$\varepsilon_{x} /$ I M2 Exial Mb	

Electrical data

Maximum current (ii): $\quad 2.1 \mathrm{~A}$

Maximum voltage (Ui):
Conditional short circuit current: Protection against short circuits: Pollution degree:

30 Vdc
1000 A according to EN 60947-5-1
fuse 4 A 250 V type gG
3

〔 This type of switches must be used only in intrinsic safety circuits in conformity with standard IEC 60079-11, EN 60079-11 § For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

Quality marks of the product:

© (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

Characteristics approved by UL
 Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
 $$
\text { A600 (} 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text {) }
$$
 Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
 For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in (0.8 Nm).
 For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).
 In conformity with standard: UL 508, CSA 22.2 No. 14
 Please contact our technical service for the list of approved products.

Adjustable levers

For switches with swivelling lever the lever can be adjusted in 10° steps over the entire 360° range. The positive movement
 transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15

Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Orientable heads

In all switches, it is possible to rotate the head in 90° steps.

Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded).

Code structure

Contact blocks	With external rubber gasket			With external rubber gasket
5 R	FL 515-M2-EX7 Θ 1NO+1NC	FL 516-M2-EX7 Θ 1NO+1NC	FL 519-M2-EX7 Θ 1NO+1NC	FD 520-M2-EX7 1NO+1NC
20 L	FL 2015-M2-EX7 Θ 1NO+2NC	FL 2016-M2-EX7 Θ 1NO+2NC	FL 2019-M2-EX7 Θ 1NO+2NC	FD 2020-M2-EX7 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3

	With external rubber gasket	With external rubber gasket	Bistable	Rope switch for signalling
Contact blocks				
5 R	FL 521-M2-EX7 1NO+1NC	FL 525-M2-EX7 1NO+1NC	FL 541-M2-EX7 Θ 1NO+1NC	FL 576-M2-EX7 1NO+1NC
20 L	FL 2021-M2-EX7 1NO+2NC	FL 2025-M2-EX7 1NO+2NC		FL 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.08 Nm	0.14 Nm	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm}$ - $)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 3	page 238 - group 3	page 238 - group 4	page 238 - group 6

All measures in the drawings are in mm

Code -EX7	Approvals	Category	Zone	EPL
	ε_{x} II 2G Ex ia IICT6 Gb	2G	1	Gb
	\&x $1 / \mathrm{M} 2 \mathrm{Ex}$ ia I Mb	M2	M2	Mb
Accessories See page 225		\rightarrow The 2D/3D files are available at www.pizzato.com		

Position switches with revolving lever without actuator

IMPORTANT
For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

- ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside.

If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
${ }^{(2)}$ If installed with switch FL $\bullet 58-\mathrm{M} 2-\mathrm{EX7}$ (e.g. FL 558-M2-EX7, FL 658-M2-EX7...) the actuator could mechanically interfere with the housing of the switch. The interference could happen or not according to the actuator and the head fixing position.

Safety switches with separate actuator

Actuators

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VF KEYF | VF KEYF1 | VF KEYF2 | VF KEYF3 | VF KEYF7 | VF KEYF8 |
| Straight actuator | Angled actuator | Swivelling actuator | Actuator adjustable in
 two directions | Actuator adjustable in
 one direction | Universal actuator |

IMPORTANT: These actuators can be used with items of the FL series only (e.g. FL 2093-M2-EX7).
Low level coded actuators according to EN ISO 14119.

Safety switches for hinges

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Safety rope switch with reset for emergency stops

Contact type: $\mathbf{L}=\text { slow action }$			
20 L	FL 2078-M2-EX7 Θ 1NO+2NC	FL 2083-M2-EX7 Θ 1NO+2NC	FL 2084-M2-EX7 Θ 1NO+2NC
Min. force	initial 63 N ...final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	initial 147 N ...final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	initial 147 Nfinal $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 171-group 1	page 171-group 2	page 171-group 2

Accessories for rope installation

3								
VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR03	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal head	Safety spring for transversal head	$\begin{aligned} & \text { Rope, } \varnothing 5 \\ & \mathrm{~mm} \text {. } \\ & 100 \mathrm{~m} \text { rolls } \end{aligned}$	Function indicator for ropes. Text "STOP"	Stainless steel pulley	Angular pulley, stainless steel

Application examples and max. rope length

© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL
-EX7	§x II 2G Ex ia IICT6 Gb	2G	1	Gb
	¢ 1 M 2 Ex ial Mb	M2	M2	Mb

Main features

- Approvals:

Category 2G and M2

- Metal housing, one conduit entry
- Protection degree IP67
- Versions with gold-plated silver contacts

ATEX markings and quality labels:

C
(Ex) II 2G Ex ia IIC T6 Gb
〔 I M2 Ex ia I Mb

Technical data

Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20×1.5
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:
Mechanical endurance:
F•••••-EX•
F•••C•EX•F•••96-EX•
Mounting position: Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX•
F•••C•EX•
F•••96-EX•
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact block 20:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

In conformity with the requirements of:
ATEX Directive 94/9/EC
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240 . Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2G	1	Gb	Ex II 2G Ex ia IICT6 Gb	EX7
M2	M2	Mb	\&x I M2 Ex ia I Mb	EX7

Electrical data

Maximum current (ii): $\quad 2.1 \mathrm{~A}$
Maximum voltage (Ui):
Conditional short circuit current: Protection against short circuits:

30 Vdc
1000 A according to EN 60947-5-1
Pollution degree:
fuse 4 A 250 V type gG
〔 This type of switches must be used only in intrinsic safety circuits in conformity with standard IEC 60079-11, EN 60079-11
$\widehat{4}$ For the correct utilization of the switch use cable glands suitable for the zone according to the ATEX directive

Quality marks of the product:

© (1)w EH[

UL approval:
E131787
EAC approval: RU C-IT ДM94.B. 01024

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc) A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14
Please contact our technical service for the list of approved products.

Adjustable levers

In the switches it is possible to adjust the lever with 10° steps for the whole 360° range. The positive movement transmission
is always gua-

ranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling
This makes it possible to have two different work plans of the lever.

Orientable heads

In all switches, it is possible to rotate the head in 90° steps.

Code structure

Housing

FM metal, one conduit entry

Contact blocks		
$\mathbf{5}$	1NO+1NC, snap action	
$\mathbf{1 1}$	2NC, snap action	
$\mathbf{1 2}$	2NO, snap action	
$\mathbf{2 0}$	1NO+2NC, slow action	
$\mathbf{2 1}$	3NC, slow action	
$\mathbf{2 2}$	2NO+1NC, slow action	
	Actuators	
$\mathbf{0 1}$	short plunger	
$\mathbf{0 2}$	roller lever	
$\boldsymbol{\ldots}$	

ATEX approval

-EX7
 Exx II 2G Ex ia IICT6 Gb
 \&x $\mid \mathrm{M} 2 \mathrm{Ex}$ ia 1 Mb

Threaded conduit entry
M2 M20×1.5

Contact type
Cilver contacts (standard)
Gsilver contacts with $1 \mu \mathrm{~m}$ gold coating

	With external rubber gasket			
Contact blocks				
5 R	FM 508-M2-EX7 Θ 1NO+1NC	FM 512-M2-EX7 Θ 1NO+1NC	FM 513-M2-EX7 Θ 1NO+1NC	FM 515-M2R28-EX7 \bigodot 1NO+1NC
20 L	FM 2008-M2-EX7 Θ 1NO+2NC	FM 2012-M2-EX7 Θ 1NO+2NC	FM 2013-M2-EX7 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FM 2015-M2R28-EX7 Θ 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 240-group 1	page 240-group 1	page 240-group 1	page 240-group 1

	With external rubber gasket	With external rubber gasket	With external rubber gasket	Rope switch for signalling
Contact blocks				
5 R	FM 520-M2-EX7 1NO+1NC	FM 521-M2-EX7 1NO+1NC	FM 525-M2-EX7 1NO+1NC	FM 576-M2-EX7 1NO+1NC
20 L	FM 2020-M2-EX7 1NO+2NC	FM 2021-M2-EX7 1NO+2NC	FM 2025-M2-EX7 1NO+2NC	FM 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.06 Nm	0.04 Nm	0.11 Nm	initial 20 N - final 40 N
Travel diagrams	page 240 - group 4	page 240 - group 4	page 240 - group 4	page 240 - group 7

Code-EX7	Approvals	Category	Zone	EPL
	ε_{x} II 2G Ex ia IICT6 Gb	2G	1	Gb
	$\varepsilon_{x} /$ I M2 Ex ia I Mb	M2	M2	Mb
Accessories See page 225		\rightarrow The 2D/3D files are available at www.pizzato.com		

Contact type:$\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & \text { = slow action } \end{array}$	
Contact blocks	
5 R	FM 538-M2-EX7 Θ 1NO+1NC
20 L	FM 2038-M2-EX7 $¢$ 1NO+2NC
Min. force	$0,06 \mathrm{Nm}(0,25 \mathrm{Nm} \Theta)$
Travel diagrams	page 240 - group 5

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235

Loose actuators
IMPORTANT: These loose actuators can be used with items of the FM series only.

- ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF LE56.

Safety switches with slotted hole lever
All measures in the drawings are in mm

Application examples

Safety switches for hinges

Application examples

© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Accessories See page 225

Notes

Main features

－Approvals：

2D category

－Metal housing，one conduit entry
－Protection degree IP66
－Versions with gold－plated silver contacts

ATEX markings and quality labels：

这 $\boldsymbol{I I}$ 2D Ex tb IIIC T80 ${ }^{\circ} \mathrm{C}$ Db

Technical data

Housing

Metal housing，baked powder coating
One threaded conduit entry：
Protection degree：
M20x1．5
IP66 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature：	$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Max．actuation frequency：	3600 operating cycles ${ }^{1 /} /$ hour $^{\text {r }}$
Mechanical endurance：	
F•••••－EX•	10 million operating cycles ${ }^{1}$
F $\bullet \bullet 93-E X \bullet, F \bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8-E X \bullet, ~ F \bullet \bullet \bullet 95-E X \bullet$	500.000 operating cycles ${ }^{1}$
F•••99－EX•，F•••R2－EX•	250.000 operating cycles ${ }^{1}$
Mounting position：	any

Mounting position：
any
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$（NC contacts）：
F•••••EX 20，000，000
F•••93－EX•，F•••78－EX•，F•••8•－EX 1，000，000
F•••99－EX•，F•••R2－EX 500，000
F•••95－EX•
2，500，00
Mechanical interlock，not coded：type 1 according to EN ISO 14119
Tightening torques for installation：see pages 235－246
（1）One operation cycle means two movements，one to close and one to open contacts，as defined in EN 60947－5－1．

Cable cross section（flexible copper strands）

Contact blocks 20，28．

Contact block 5 ：

In conformity with standards：

IEC 60947－5－1，EN 60947－5－1，EN 60947－1，EN 50047，IEC 60204－1，EN 60204－1， EN ISO 14119，EN ISO 12100，IEC 60529，EN 60529，UL 508，CSA 22.2 No．14， IEC 60079－0，EN 60079－0，IEC 60079－31，EN 60079－31．

In conformity with the requirements of：
ATEX Directive 94／9／EC
Low Voltage Directive 2006／95／EC，Machinery Directive 2006／42／EC and
EMC Directive 2004／108／EC．
Positive contact opening in conformity with standards：
IEC 60947－5－1，EN 60947－5－1．

Installation for safety applications：
Use only switches marked with the symbol Θ aside the product code．Always connect the safety circuit to the NC contacts（normally closed contacts：11－12，21－22 or 31－32）as stated in standard EN 60947－5－1，encl．K，par．2．Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238．Operate the switch at least with the positive opening force，indicated between brackets below each article，aside the minimum force value．
§ If not expressly indicated in this chapter，for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code extension
2D	21	Db	\x \｜II 2D Ex tb IIIC $780^{\circ} \mathrm{C} \mathrm{Db}$	－EX8

Electrical data

Thermal current（lth）： 6 A
Rated insulation voltage（Ui）：
Conditional short circuit current：
Protection against short circuits：
Pollution degree：

250 Vac／Vdc
1000 A according to EN 60947－5－1
type aM fuse 6 A 500 V
3

Utilization category

Alternating current：AC15 $(50 \div 60 \mathrm{~Hz})$
Ue（V） 250
le（A） 6
Direct current：DC13
Ue（V） $24 \quad 125 \quad 250$
$\begin{array}{lll}\text { le（A）} & 6 & 1.1\end{array}$
0.4
$\widehat{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

Quality marks of the product:

(©) w En

UL approval: E131787
EAC approval: RU C-IT ДM94.B. 01024

Characteristics approved by UL
 Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
 $$
\text { A600 (} 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text {) }
$$
 Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
 For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).
 For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).
 In conformity with standard: UL 508, CSA 22.2 No. 14
 Please contact our technical service for the list of approved products.

Adjustable levers

In the switches it is possible to adjust the lever with 10° steps for the whole 360° range. The positive movement transmission

Overturning levers

In the switches, the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Orientable heads

In all switches, it is possible to rotate the

Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger.

Code structure

FD 502-GM2-EX8

Housing
FD metal, one conduit entry

Contact blocks
5 1NO+1NC, snap action
10 2NO, slow action
11 2NC, snap action
20 1NO+2NC, slow action
21 3NC, slow action
22 2NO+1NC, slow action

Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever

ATEX approval
-EX8 旣 \| $2 \mathrm{D} \mathrm{Extb} \| I \mathrm{CT} 80^{\circ} \mathrm{C} \mathrm{Db}$

Threaded conduit entry
M2 M20x1.5

Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating

		Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	Bistable	Rope switch for signalling
Contact blocks				
$5 \quad \mathbf{R}$	FD 516-M2-EX8 Θ 1NO+1NC	FD 519-M2-EX8 Θ 1NO+1NC	FD 541-M2-EX8 Θ 1NO+1NC	FD 576-M2-EX8 1NO+1NC
20 L	FD 2016-M2-EX8 Θ 1NO+2NC	FD 2019-M2-EX8 Θ 1NO+2NC		FD 2076-M2-EX8 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238-group 1	page 238-group 1	page 238 - group 4	page 238 - group 6

All measures in the drawings are in mm

Accessories See page 225

Position switches with revolving lever without actuator
Contact type:

| $\mathbf{R}=$ shap a action |
| :--- | :--- |
| $\mathbf{L}=$ slow action |

Regular head

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

Safety switches with separate actuator
All measures in the drawings are in mm

Contact type:	Switches with separate actuator	Switches with separate actuator and key release	Switches with manual mechanical delay
Contact blocks	Switches without actuator	Switches without actuator	Switches without actuator
20 L 28 \mathbf{L}	FD 2093-M2-EX8 Θ 1NO+2NC	FD 2099-M2-EX8 FD 2899-M2-EX8 $(1 \mathrm{NO}+2 \mathrm{NC}$	FD 20R2-M2-EX8 $\Theta 1 N O+2 N C$
Min. force Travel diagrams Gen. Cat. Safety	$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$ page 21	$30 \mathrm{~N}(40 \mathrm{~N} \Theta)$ page 140	$10 \mathrm{~N}(18 \mathrm{~N} \Theta$

Actuators

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VF KEYF | VF KEYF1 | VF KEYF2 | VF KEYF3 | VF KEYF7 | VF KEYF8 |
| Straight actuator | Angled actuator | Swivelling actuator | Actuator adjustable in
 two directions | Actuator adjustable in
 one direction | Universal actuator |

IMPORTANT: These actuators can be used with items of the FD series only (e.g. FD 2093-M2-EX8).
Low level coded actuators according to EN ISO 14119.

Safety switches for hinges

Contact type:	
L = slow action	
Contact blocks	
20 L	FD 2095-M2-EX8 Θ 1NO+2NC
Min. force	$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams Gen. Cat. Safety	page 75

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL		
-EX8	Exx \\| $\\| 2 \mathrm{D} \mathrm{Ex} \mathrm{tb} \mathrm{IIICT80}{ }^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db		

Safety rope switch with reset for emergency stops

Contact type:
\mathbf{L} = slow action
Contact blocks

Accessories for rope installation

Application examples and max. rope length

© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code Approvals	Category	Zone	EPL
-EX8 ¢ ¢x II 2D Ex tb IIICT80 ${ }^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db

Main features

- Approvals:

2D category

- Metal housing, three conduit entries
- Protection degree IP66
- Versions with gold-plated silver contacts

ATEX markings and quality labels:

$C E$
区x II 2D Ex tb IIIC $\mathbf{T 8 0}{ }^{\circ} \mathrm{C}$ Db
certification in progress

Technical data

Housing

Metal housing, baked powder coating
Three threaded conduit entries:
M20x1.5
Protection degree:
IP66 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Max. actuation frequency:
3600 operating cycles ${ }^{1} /$ hour
Mechanical endurance:
F•••••-EX•
10 million operating cycles ${ }^{1}$
F•••93-EX \bullet F $\bullet \bullet \bullet 78-E X \bullet, F \bullet \bullet \bullet 8 \bullet E X \bullet, F \bullet \bullet \bullet 95-E X \bullet 500.000$ operating cycles ${ }^{1}$
Mounting position:
any
Safety parameters $\mathrm{B}_{10 \mathrm{~d}}$ (NC contacts):
F•••••-EX• 20,000,000
$F \bullet \bullet \bullet 93-E X \bullet, F \bullet \bullet \bullet 8-E X \bullet, F \bullet \bullet \bullet 8 \bullet-E X \quad 1,000,000$
F•••95-EX•
Mechanical interlock, not coded:
2,500,00
Tightening torques for installation:
type 1 according to EN ISO 14119 EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact block 20:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\operatorname{max.}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-31, EN 60079-31.

In conformity with the requirements of:
 ATEX Directive 94/9/EC
 Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
 EMC Directive 2004/108/EC.
 Positive contact opening in conformity with standards:
 IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Category	Zone	EPL	Approvals	Product code exten- sion	
2D	21	Db	$\Sigma_{x} \\|$ II 2D Ex tb IIICT80 ${ }^{\circ} \mathrm{C} \mathrm{Db}$	-EX8	

Electrical data

Thermal current (Ith): 6 A
Rated insulation voltage (Ui):
Conditional short circuit current:
Protection against short circuits:
Pollution degree:

6 A
250 Vac/Ndc
1000 A according to EN 60947-5-1
type aM fuse 6 A 500 V
3

Utilization category

Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$
Ue (V) 250
le (A) 6
Direct current: DC13
Ue (V) $24 \quad 125 \quad 250$
$\begin{array}{lll}\text { le (A) } & 6 & 1.1\end{array}$
0.4
$\overleftrightarrow{4}$ For the correct utilization of the switch please use cable glands suitable for the zone according to the ATEX directive

Quality marks of the product:

© (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT ДM94.B. } 01024\end{array}$

Characteristics approved by UL
 Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
 $$
\text { A600 (} 720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac} \text {) }
$$
 Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
 For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in (0.8 Nm).
 For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).
 In conformity with standard: UL 508, CSA 22.2 No. 14
 Please contact our technical service for the list of approved products.

Adjustable levers

For switches with swivelling lever the lever can be adjusted in 10° steps over the entire 360° range. The positive movement
 transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Orientable heads

In all switches, it is possible to rotate the head in 90° steps.

Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded).

Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

$$
\text { FL } 502-\mathrm{GM2}-\mathrm{EX8}
$$

Housing

FL metal, three conduit entries

Contact blocks
$5 \quad 1 \mathrm{NO}+1 \mathrm{NC}$, snap action
10 2NO, slow action
11 2NC, snap action
20 1NO+2NC, slow action
21 3NC, slow action
22 2NO+1NC, slow action

Actuators

01 short plunger
02 roller lever

ATEX approval
-EX8 旣 \| $2 \mathrm{D} \mathrm{Extb} \| I \mathrm{CT} 80^{\circ} \mathrm{C} \mathrm{Db}$

Threaded conduit entry
M2 M20x1.5

Contact type

silver contacts (standard)

G
silver contacts with $1 \mu \mathrm{~m}$ gold coating

		Ball, $\varnothing 12.7$ mm, stainless steel	Bistable	Rope switch for signalling
Contact blocks				
5 R	FL 516-M2-EX8 Θ 1NO+1NC	FL 519-M2-EX8 Θ 1NO+1NC	FL 541-M2-EX8 Θ 1NO+1NC	FL 576-M2-EX8 1NO+1NC
20 L	FL 2016-M2-EX8 Θ 1NO+2NC	FL 2019-M2-EX8 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$		FL 2076-M2-EX8 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 4	page 238 - group 6

Accessories See page 225

Position switches with revolving lever without actuator
Contact type:

$\overline{\mathbf{R}}=$ snap action
$\mathbf{L}=$ slow action

Cogular head

IMPORTANT
For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

Safety switches with separate actuator

Contact type:
L = slow action

Actuators

| VF KEYF | VF KEYF1 | VF KEYF2 | VF KEYF3 | VF KEYF7 | VF KEYF8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Straight actuator | Angled actuator | Swivelling actuator | Actuator adjustable in
 two directions | Actuator adjustable in
 one direction | Universal actuator |

IMPORTANT: These actuators can be used with items of the FL series only (e.g. FL 2093-M2-EX8).
Low level coded actuators according to EN ISO 14119.

Safety switches for hinges

Contact type:	
L = slow action	
20 L	FL 2095-M2-EX8 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
Min. force	$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams Gen. Cat. Safety	page 75

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL	
-EX8	\xx \\|II 2D Ex tb IIICT80 ${ }^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db	

Safety rope switch with reset for emergency stops

Contact type: $\mathbf{L} \text { = slow action }$			
18 L	FL 1878-M2-EX8 Θ 1NO+1NC	FL 1883-M2-EX8 Θ 1NO+1NC	FL 1884-M2-EX8 Θ 1NO+1NC
20 L	FL 2078-M2-EX8 Θ 1NO+2NC	FL 2083-M2-EX8 Θ 1NO+2NC	FL 2084-M2-EX8 Θ 1NO+2NC
Min. force	initial $63 \mathrm{~N} . . . \mathrm{final} 83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	initial 147 N ...final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams Gen. Cat. Safety	page 171-group 1	page 171 - group 2	page 171-group 2

Accessories for rope installation

Application examples and max. rope length

〔 If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Code	Approvals	Category	Zone	EPL	
-EX8	〔x \\| \| $2 \mathrm{D} \mathrm{Ex} \mathrm{tb} \mathrm{IIIC} 780^{\circ} \mathrm{C} \mathrm{Db}$	2D	21	Db	

