1) pizzato diluthe

General Catalogue Detection

1
Company Profile

1 New products 2015-2016

i-	e-
0 -	
-	\%
4	\%

2 Position switches for heavy duty applications

FD series

FL series

- 39

FP series
-29

FC series
-49

3 Position switches for normal duty applications with or without reset

4 Prewired modular position switches

NA-NB series

- 119

NF series

- 129

5 Microswitches

MK series
-143

6 Switches for special applications

7 Accessories

8 Appendix

Utilization requirements $\quad 235$
Contact blocks $\quad 247$

Connectors 255
Introduction to Safety $\quad 261$
Technical concepts

- 283

Alphanumeric Table of Contents $\quad 287$
General Sales Terms

- 293

200 PASSIONATE PROFESSIONALS

It is people, with their professionalism and dedication that make a great company. This profound conviction has always guided Pizzato Elettrica in their choice of employees and collaborators. Today, Giuseppe and Marco Pizzato lead a tireless team providing the fastest and most efficient response to the demands of the market. This team has grown since the year 2000 and has achieved a considerable increase in business in all the countries where Pizzato Elettrica is present.

The various strategic sectors of the business are headed by professionals with significant experience and expertise. Many of these people have developed over years with the company.

Others are experts in their specific field and have integrated personal experience with the Pizzato Elettrica ethos to extend the company's capability and knowledge.

From the design office to the technical assistance department, from managers to workers, every employee believes in the company and its future. Pizzato Elettrica employees all give the best of themselves secure in the knowledge they are the fundamental elements of a highly valuable enterprise.

100\% MADE IN ITALY

An entrepreneurial company such as Pizzato Elettrica, which has grown day after day thanks to the "culture of doing" of a family that benefited from approaching its work with tenacity, intelligence and far-sightedness, has its foundations in a system of solid and deeply-shared values. The pillars that form the basis of the company's work have remained constant and constitute Pizzato Elettrica's fundamental guiding principles.

- TERRITORIAL ROOTS. Pizzato Elettrica is a successful example of the ripe entrepreneurship that characterises the North-East of Italy and Veneto in particular, an area that is tellingly referred to as "Italy's locomotive". The territory is highly productive in every sector, from agriculture to high technology, and makes a fundamental contribution to the generation of Italian wealth; where 100 is the average per capita value added produced at the national level, the figure here has consistently been between 110 and 135 . The productivity rate is among the highest in Europe and originates from a tradition of diffuse and markedly export-oriented entrepreneurship.
- ORIENTATION TO EXCELLENCE. Innovation and development: this company philosophy is at the heart of the operations and product quality assessments that Pizzato Elettrica performs in a 360 degree manner, and is also manifest in the heightened propensity for research and innovation that characterises its design work. Every product development in Pizzato Elettrica is born with the aim of bringing a secure, reliable and innovative choice to the market: those using Pizzato Elettrica products do so in the certainty that they are of certified quality as fruits of a process that is scrupulously controlled at every stage.
- ATTENTION TO THE CLIENT. In order to be successful, a product must respond to the specific needs of those who will use it: quality alone is not enough. Market developments must be carefully monitored so that one can understand, in advance, which new applications will prove truly useful. This is why Pizzato Elettrica has always cultivated close synergies with the companies that choose it as a supplier, using this continuous dialogue to identify the potential developments of its product
 range so as to render it highly flexible, complete and able to offer optimal solutions to diverse needs.

1984: AN ENTREPRENEURIAL STORY BEGINS

16 NOVEMBER 1984. This is the date that marks the beginning of a long entrepreneurial story: the story of a family that was able to build a company and allow it to grow consistently, one step at a time, to reach important results, guided by a profound work ethic and a marked spirit of initiative.

- 80s. The company was initially called Pizzato, owned by the Pizzato B. \& C. general partnership with headquarters in Marostica. It was immediately able to assert itself on the market thanks to the quality of its products. In the short space of four years, the firm had already developed to the point of making a fundamental upgrade: on 18 April 1988, it became Ltd. company and was re-named Pizzato Elettrica, a brand shortly destined to become renowned and appreciated nationwide. During the year 1988, its first company-owned plant, geared towards mechanical processing, was built. By the end of the decade, thanks to the development of quality products and the experience built on the Italian market, Pizzato Elettrica turned to the international market: in 1989, the commercialisation of products was extended to the USA.
- 90 s. The range of products continued to be upgraded and specialised with the introduction of new machinery and the growing input of technology. In 1994, Pizzato Elettrica introduced its first line of prewired switches with immediate success. 1996 and 1997 were important years in the development of safety devices, a sector that became strategic when new European directives on working environments were introduced. Pizzato Elettrica immediately became an Italian leader in this regard, thanks to its evolved safety switches and switches with solenoid. Meanwhile (1995), its second plant, geared towards the moulding of plastic materials, was also born. The brand was now ready to approach the new frontiers of the international market: South Africa in 1995 and Australia in 1997. As a confirmation of its innovative spirit, Pizzato Elettrica was among the first companies to believe in the strong potential of the Web, presenting itself online with a well-constructed and multi-functional site as early as 1996. This exciting, constant growth culminated in 1998 with the construction of the third plant, dedicated to the assembly department.
- 00s. The new millennium heralded the search for quality certifications: the ISO 9002 was achieved in April 2000, followed by the ISO 9001 achieved in November 2002. In the meanwhile, technological evolution continued: in 2000, the design studio began using 3D CAD systems. This allowed new avant garde product models to be developed, such as safety modules (2002) and switches conforming to the European ATEX directives (2005), laid out for equipment operating in potentially explosive environments.
In 2006, the HP switch, the result of an innovative engineering design project combining safety and style in a single product, was introduced to the market.
In 2007, the company extended its range of products for machine safety, introducing two new series of magnetic safety sensors, suitable for the monitoring of protections and repairs.
The initial months of 2009 have witnessed the introduction of the new prewired modular switches NA-NB-NF series.
In 2010 Pizzato Elettrica introduced the new EROUND line control and signalling devices, therefore remarkably widening its offer within the man-machine interface sector.
In 2011, the first pre-programmed safety modules of the GEMNIS CS MF series are introduced.
In 2012, the company integrates its offering in the machine safety field, thanks to the ST series sensors with RFID technology and to the programmable safety modules of the GEMNIS CS MP series.
In 2013, the range of hinge safety switches was expanded with the AISI 316L stainless steel HX switches.
2014 saw the launch on the market of the RFID safety switches with NG series block and of the safety handle of the P-KUBE 2 line for NG series switches.
Thanks to the robust interlocking system, the NG series switches ensure a maximum locking force of the Fzh actuator that is equivalent to 7500 N .
The new safety handle P-KUBE 2, which is installed in combination with the RFID safety switch with NG series block, provides an integrated locking system of the protections with related access control to dangerous areas.

59,000,000 PARTS SOLD WORLDWIDE

Pizzato Elettrica's product catalogue contains about 7,000 items, with more than 1,300 special codes developed for devices personalised according to clients' specific needs.
Pizzato Elettrica devices can be grouped, according to typology, into three main macro-categories:

- POSITION SWITCHES. They are installed on a daily basis on any type of industrial machinery, for applications in the wood, metal, plastic, elevators, automotive, naval sectors, etc. In order to be used in a such wide variety of sectors and countries, Pizzato Elettrica position switches are made to be assembled in a lot of configurations thanks to the various body shapes, dozens of contact blocks, hundreds of actuators and materials, forces, assembling versions.
The product range that Pizzato Elettrica can offer in the field of position switches is one of the widest in the world. Moreover, the use of high quality materials, high reliability technologies as twin bridge contact blocks and the protection degree IP67, make this range of position switches one of the most technologically evolved.
Furthermore since 2005 Pizzato Elettrica has also started to produce versions of its switches with specific features for some sectors as follows: switches with ATEX homologations and switches for high temperature.
- SAFETY DEVICES. The company Pizzato Elettrica has been one of the first Italian companies developing dedicated items for this sector, creating and patenting dozens of innovative products, so becoming one of the main European manufacturers of safety devices. The wide range of specific products for machine safety completely designed and assembled in our company premises in Marostica (VI), has been widened by the introduction of coded magnetic sensors, switches with solenoid provided with anti-panic release device, hinged safety switches and new safety handles. Recent products include the RFID safety sensors of the ST series, the stainless steel hinge safety switches of the HX series, the RFID switches with block of the NG series, and the safety handle of the P-KUBE 2 line.
- MAN-MACHINE INTERFACE. Thanks to the recent introduction of the EROUND control and signalling devices, Pizzato Elettrica considerably widens its offer in the man-machine interface sector.
The new design, the attention to details and the elegance of the product combined with its maximum safety and reliability, take the series to the forefront of the market.
The wide range that our Company offers in the manmachine interface sector includes single and modular foot switches with many patented joint kits.

In order to satisfy its customers' needs and requests, Pizzato Elettrica offers a lot of accessories purposely designed not only to complete its wide range of products, but also to help their installations on machineries.

140 NEW PROJECTS COMPLETED

There's a key word in the development of latest-generation devices: Mechatronics. This new science has grown in recent years, reaching some of the most important research centres, both national and international, right here in Veneto. It is based on the fusion of the principles of Mechanics with those of Electronics in the design of instruments that guarantee great precision, high performance, versatility and constant improvement.

This is why, in recent years, all new models have indeed been created following careful Mechatronics studies, undertaken directly by the highly specialised technicians and engineers that form part of the R\&D department.

The evolution of Pizzato Elettrica's product lines thus proceeds on a double platform: on one side, there are the internally-researched innovative materials and technologies; on the other, the particular needs that emerge from continuous dialogue with big competitors and, above all, clients. Indeed, requests for specific personalisations of a product are quite common: Pizzato Elettrica's duty is to respond to these needs as best it can, guaranteeing maximum flexibility and openness with regards to 'custom made' projects too.

10 MILLION CERTIFIED PRODUCT CODES

A simple brand isn't enough: the company is aiming for the Pizzato Elettrica brand to be widely recognised as a synonym for absolute quality and certainty.

A result that has been reached and consolidated over the years, updating and expanding the series of certifications obtained from the most important Italian and international control organs. Product quality is assessed by five accredited external bodies: IMQ, UL, CCC, TÜV SÜD, EAC. These bodies lay out high technical and qualitative standards for the company to achieve and maintain, verified yearly with seven different inspections: these are performed, without prior notice, by qualified inspectors, who extract samples of products and materials destined for sale from plants, or from the market directly, to subject them to apposite tests.

- CE MARK. All Pizzato Elettrica products bear the CE mark, in concordance with the European Directives.
- ISO 9001 CERTIFICATION. The company's production system conforms with national UNI EN ISO 9001 and international ISO 9001 standards. The certification covers all of the company's plants and their production and managerial activities: entry checks, technical, purchasing and commercial department activities, manufacturing operations assessments, final pre-shipping product tests and checks, equipment reviews and the management of the metrological lab.
- CERTIFICATION OF COMPANY QUALITY SYSTEMS. Pizzato Elettrica has obtained the certificate of compliance with the UNI EN ISO 9000 regulations in force in Italy and abroad. It is issued by a recognised independent body that guarantees the quality and reliability of the service offered to clients worldwide.
- CSQ, CISQ AND IQNET. The CSQ system is part of the CISQ (Italian Certification of Quality Systems) federation, which consists of the primary certification bodies operating in Italy and its various product sectors. CISQ is the Italian representative within IQNet, the biggest international Quality Systems and Company Management certification network, which is adhered to by 25 certification organs in as many countries.

140 REGISTERED PATENTS

The fact that Pizzato Elettrica has, over 30 years, been able to take on a leadership role at the European level is also a result of continuous research and innovation, which its labs and internal design studios undertake on a daily basis.

This is a strategic sector that is exploited to the maximum thanks to a constant process of innovation: indeed, this undoubtedly represents the most important value added. This is why, on average, Pizzato Elettrica develops innovative projects to be covered by international patents each year: a route that the company has been following since its birth, immediately understanding the importance of registering and protecting ideas in order to approach the market with the added strength of being truly 'different' from its competitors.

The company's ideas are what have distinguished it and allowed it to come to occupy a highly important market position, through the tens of patents that have been developed and registered. An ever evolving know-how that is renewed daily, as demonstrated, for example, by the more recent innovations introduced in the safety device sector. This field is due to change significantly in the coming years through profound technological developments: a path that Pizzato Elettrica once again intends to take before time, outlining new principles destined to respond to the international market trends of the future.

20,800 HOURS DEDICATED TO RESEARCH PER YEAR

Behind every new product lies a careful research and design process that aims to find technologically advanced solutions that can improve the device.

This evolution would not have been possible if Pizzato Elettrica hadn't acquired increasingly well-adapted instruments over time, thus keeping pace with the latest technological frontiers. In this sense, the number of computers used daily within the company is particularly significant: an average of almost one computer per employee (workers included!) represents an exhaustive index of a highly computerised company.

The design effort utilises the most evolved 3D CAD software; the efficiency of the Electrical and Mechanical labs, which operate in strict synergy, allows for immediate assessments to be undertaken for the development and perfection of every functional aspect of the prototypes.

The switches undergo the most thorough of checks, which evaluate their efficiency in extreme conditions too: this ensures that Pizzato Elettrica's clients will have access to a genuinely safe, reliable product.

Measurements are taken using over 200 precision tools, which allow for every single component and every characteristic of the finished products to be evaluated: from measures of humidity and temperature to weight and force, to electrical levels, flammability, mechanical duration, magnetic characteristics, microscopic surveys, the level of IP protection and EMC electromagnetic compatibility.

1,000 TECHNICAL SUPPORT ANSWERS PER MONTH

Pizzato Elettrica sees itself as a company that is as attentive to customers needs as it is to the development of its products.
This is why significant resources have always been dedicated to the development of the technical assistance service, giving the company the role of a highly qualified technological partner that is able to fully support technicians and designers.

Pizzato Elettrica offices can be contacted by telephone from Monday to Friday and offer both information and advice relating to the choice of products, the technical characteristics and the correct installation, ensuring to the customers a direct technical assistance service.

WWW.PIZZATO.COM

Pizzato Elettrica was one of the first Italian firms of its sector to believe in Internet, developing a web site since 1996.
Pizzato Elettrica website is now available in four languages (Italian, English, French, and German) and it includes plenty of technical data, technical information and news about products and services provided by the company.

- General Catalogue
- Certificates, brochures and leaflets of new products
- Search engine for codes
- List of new products
- Form to require technical and commercial information
- Article cross reference
- Frequently asked questions (FAQ)
- Company profile
- List of trade fairs
- Download 2D CAD drawings in DXF format
- Download 3D CAD drawings in STEP format
- Download Pizzato Elettrica libraries for the SISTEMA software
- Video section with installation examples
- Section dedicated to Machine Safety, explanations of standards and prescriptions for product operation
- Quick News section, with all the latest news on products and services by Pizzato Elettrica
- Newsletter

MORE THAN 40 MEETINGS ORGANISED EACH YEAR

EXHIBITIONS

Pizzato Elettrica regularly participates to many trade fairs in Italy and abroad, presenting in this way to the market the products, the latest news, etc.

MEETINGS

Pizzato Elettrica, in addition to offering a qualified technical assistance, sees itself as dynamic company attentive to customers needs organising several meetings and training courses, with a particular focus on machinery safety standards.

MULTILINGUAL DOCUMENTATION

Pizzato Elettrica provides to its customers a wide range of technical documentation available in several languages: Italian, English, German, French, Turkish, etc.
From the general catalogue to the detailed brochures, from leaflets of new products to price lists and CD-ROM, Pizzato Elettrica customers can find in a quick and exact way all the information concerning products, the technical characteristics and functionality, the proper installation, application examples, etc.

77,000 PACKAGES SHIPPED PER YEAR

In order to be able to bring its products to distributors and clients operating all over the world, Pizzato Elettrica's guiding principles are speed and efficiency.

These objectives informed the company's creation of a computerised merchandise transfer system, which is managed automatically by an appositely developed company software that is geared towards specific operational needs.

Over 77,000 parcels are sorted by the logistic center each year: a significant volume of merchandise reflecting the needs of an evermore rapid and competitive market.

All shipments and transfers are traced via a barcode system that can immediately identify the contents of any parcel. A pre-arranged system that is easily modulated: this flexibility has also proved key in providing a quick response to particularly urgent shipment requests.

Among the strengths in the company relationship with the commercial network, the direct assistance guaranteed in six languages: Italian, English, French, German, Spanish and Chinese. A service that confirms Pizzato Elettrica quality and attention to customers needs from around the world.

TECHNICAL AND COMMERCIAL SERVICE

TECHNICAL OFFICES
Pizzato Elettrica technical offices provide a direct technical and qualified assistance in Italian and English, helping in this way the customers to choose the suitable product for their own application explaining the characteristics and the correct installation.

Office hours: from Monday to Friday
08.00-12.00 / 14.00-18.00 CET
phone:
+39.0424.470.930
fax:
+39.0424.470.955
e-mail:
tech@pizzato.com
Spoken languages
\square NI

SALES OFFICES

Among the strengths in the company relationship with the commercial network, the direct assistance guaranteed in six languages: Italian, English, French, German, Spanish and Chinese. A service that confirms Pizzato Elettrica quality and attention to customers needs from around the world.

Office hours:	from Monday to Friday
	$08.00-12.00 / 14.00-18.00$ CET
phone:	+39.0424 .470 .930
fax:	+39.0424 .470 .955
e-mail:	info@pizzato.com

Position switches restyling FD series

- New anthracite grey colour
- Indelible laser marking
- Cover integrated seal
- Protection degree IP67
- Non-loosable cover screws

Position switches restyling FP series

- Stainless steel plates for fixing screws
- New anthracite grey colour
- Cover and non-loosable cover screw
- Indelible laser marking
- Protection degree IP67

Position switches restyling FL series

- New anthracite grey colour
- Indelible laser marking
- Cover integrated seal
- Protection degree IP67
- Non-loosable cover screws

Position switches restyling FC series

- New anthracite grey colour
- Indelible laser marking
- Cover integrated seal
- Protection degree IP67
- Non-loosable cover screw

In conformity with standard EN ISO 14119

- All products are compliant with standard EN ISO 14119
- The classifications of the devices have been included in each series in accordance with the new standard
- New safety screws OneWay and Torx, for a correct installation according to the EN ISO 14119 anti-tampering directive

M20 / M16
 New metric thread

- All catalogue products with metric thread

- Warehouse handling of the metric products
- All accessories are available with metric thread
- M20 or M16 threads depending on the product series

M12 connectors available for the FC series

- M12 4- or 5-pole connectors also available for the FC compact series
- Pre-installed metal or plastic connectors
- IP67 protection grade connectors
- For rapid replacement without wiring errors

New type approvals

- New EAC certification for the Russian Customs Union
- Simplified export for Russia, Belarus, and Kazakistan
- New IMQ type-approval for MK series microswitches
- The IMQ type-approval also certifies the positive opening of the MK series

Description

> Pizzato Elettrica position switches are daily installed in every type of industrial machinery all over the world for applications in the sector of wood, metal, plastic, automotive, packaging, lifting, medicinal, naval, etc.
In order to be used in a such wide variety of sectors and countries, Pizzato Elettrica position switches are made to be assembled in a lot of configurations thanks to the various body shapes, dozens of contact blocks, hundreds of actuators and materials, forces, assembling versions.
The product range that Pizzato Elettrica can offer in the field of position switches is one of the widest in the world. Moreover, the use of high quality materials, high reliability technologies as twin bridge contact blocks and the protection degree IP67, make this range of position switches one of the most technologically evolved.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test according to IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required.

Laser engraving

All devices are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

Extended temperature range

$-40^{\circ} \mathrm{C}$
This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Overturning levers

For switches with swivelling lever the lever can be fastened straight or reversed, maintaining the positive coupling.
This makes it possible to have two different work plans of the lever.

Adjustable safety lever

The code 56 adjustable lever (and variants) has a notching that prevents the sliding also in case the retaining screw becomes loose.
The particular positive locking makes it suitable for safety applications.

Increased or reduced actuating force

For actuators with swivelling levers, versions with increased or reduced actuating force are available on request. This feature allows selection of a switch perfectly tailored for the application. For further information contact the Technical Department.

Independent contacts

The contact block 16 has two NC contacts, both with positive opening activated independently according to the lever turning direction.

Unidirectional heads

For switches with swivelling lever, it is possible to select the unidirectional operation by removing the four screws of the head and revolving the internal plunger (contact block 16 excluded),

Gold-plated contacts

The contact blocks of these devices can be supplied gold-plated upon request. It is ideal for all applications with low voltages or currents and it ensures greater contact reliability. The high-thickness coating > 1 micron ensures the mechanical endurance of the coating over time.

Stainless steel fixing plates

The technopolymer switches of the FP series come with two robust stainless steel fixing plates. This solution makes it possible to avoid the underhead washer and ensures that the fixing of the switch is more stable over time.

Contact blocks

Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for a higher contact reliability. Available in multiple variants with shifted activation strokes, which can be simultaneous or overlapping. They are suitable for different kinds of applications.

Stainless steel external metallic parts

AISI 304
Upon request some of these devices can be supplied with stainless steel external metallic parts instead of the usual zinc-plated steel. It is an ideal solution for environments with the presence of aggressive chemical agents or saline mist. See page 219.

Selection diagram

product options
accessory sold separately

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact block 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18:
Contact block 2:

min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 529, EN 60529, UL 508, CSA 22.2 No. 14.
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Markings and quality marks:

Installation for safety applications:

Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks $20,21,22,33,34$) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$) :		Direct current: DC13			
	Conditional short circuit current:		Ue (V)	24		250
	Protection against short circuits: Pollution degree:		le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	$\begin{aligned} & 4 \mathrm{~A} \\ & 250 \mathrm{Vac} 300 \mathrm{Vdc} \\ & \text { type gG fuse } 4 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$			
			le (A)	2		
			Direct	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, $21,22,33,34)$
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34) Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z a, Z b, Z a+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact block $5,6,7,9,11,13,14,16,18,20,21$,
22, 33, 34, 66
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental
requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type 1, 4 X "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 9 \\ & 2 N C \end{aligned}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 11 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 12 \\ 2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 13 \\ \text { 2NC } \end{gathered}$
M12 connector, 8 poles	M12 connector, 5 poles							
Contacts Pin no. NO 3-4	Contacts Pin no. NC 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. NO 1-2	Contacts Pin no. NC (1°) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2°) 3-4
NC 7-8	ground 5							
NO 1-2								

$\begin{gathered} \text { Contact block } 14 \\ 2 N C \end{gathered}$	$\begin{gathered} \text { Contact block } 15 \\ 2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 16 \\ 2 N C \end{gathered}$	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 20 $2 \mathrm{NC}+1 \mathrm{NO}$	Contact block 21 3NC	Contact $1 \mathrm{NC}+$	$\begin{aligned} & \text { ock } 22 \\ & \text { NO } \end{aligned}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$		$\begin{gathered} \text { Contact block } 34 \\ \text { 2NC } \end{gathered}$	
M12 connector, 5 poles	M12 connector, 8 poles	M12 connector, 8 M12 connector, 8 poles poles			M12 connector, 5 poles		M12 connector, 5 poles				
$\begin{array}{\|cc\|} \hline \text { Contacts } & \text { Pin no. } \\ \mathrm{NC}\left(1^{\circ}\right) & 1-2 \end{array}$	Contacts Pin no. $\mathrm{NO}\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC , lever at the right 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no. NC $\quad 3-4$	Contacts NC	Pin no. 3-4	Contacts NC	Pin no. 1-2	Contacts NC	Pin no. 1-2
NC (2°) $3-4$	NO (2) ${ }^{\circ}$ 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO	5-6	NO	3-4	NC	3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO	7-8	ground	5	ground	5
				ground 1	ground 1	ground	1				

```
Contact block E1
        PNP
```


M12 connector, 5 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

All measures in the drawings are in mm
Items with code on green background are stock items

All measures in the drawings are in mm

Contact blocks		Other rollers available. See on page 28	Other rollers available. See on page 28	Porcelain roller	Other rollers available. See on page 28	
5	R		FD 551-M2 Θ 1NO+1NC	FD 552-M2 Θ 1NO+1NC	FD 553-E11M2V9 Θ 1NO+1NC	FD 556-M2 Θ 1NO+1NC
6	\square	FD 651-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 652-M2 Θ 1NO+1NC	FD 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 656-M2 Θ 1NO+1NC	
7	LO	FD 751-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 752-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
9	L	FD 951-M2 Θ 2NC	FD 952-M2 Θ 2NC	FD 953-E11M2V9 Θ 2NC	FD 956-M2 Θ 2NC	
10	\square	FD 1051-M2 2NO	FD 1052-M2 2NO	FD 1053-E11M2V9 2NO	FD 1056-M2 2NO	
11	R	FD 1151-M2 Θ 2NC	FD 1152-M2 Θ 2NC		FD 1156-M2 Θ 2NC	
12	R	FD 1251-M2 2NO	FD 1252-M2 2NO	FD 1253-E11M2V9 2NO	FD 1256-M2 2NO	
13	LV	FD 1351-M2 Θ 2NC	FD 1352-M2 Θ 2NC	FD 1353-E11M2V9 Θ 2NC	FD 1356-M2 Θ 2NC	
14	LS	FD 1451-M2 Θ 2NC	FD 1452-M2 Θ 2NC	FD 1453-E11M2V9 Θ 2NC	FD 1456-M2 Θ 2NC	
15	LS	FD 1551-M2 2NO	FD 1552-M2 2NO	FD 1553-E11M2V9 2NO	FD 1556-M2 2NO	
16	LI				FD 1656-M2 Θ 2NC	
18	LA	FD 1851-M2 Θ 1NO+1NC	FD 1852-M2 Θ 1NO+1NC	FD 1853-E11M2V9 $¢ 1 \mathrm{NO}+1 \mathrm{NC}$	FD 1856-M2 Θ 1NO+1NC	
20	\square	FD 2051-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FD 2052-M2 Θ 1NO+2NC	FD 2053-E11M2V9 $¢ 1$ NO+2NC	FD 2056-M2 Θ 1NO+2NC	
21	L	FD 2151-M2 $\Theta 3 \mathrm{NC}$	FD 2152-M2 $\Theta 3 \mathrm{NC}$	FD 2153-E11M2V9 $¢ 3 \mathrm{NC}$	FD 2156-M2 $\Theta 3 N \mathrm{C}$	
22	L	FD 2251-M2 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FD 2252-M2 Θ 2NO+1NC	FD 2253-E11M2V9 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FD 2256-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	
2	R	FD 251-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)	FD 252-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FD 253-E11M2 2x(1NO-1NC)	FD 256-M2 2x(1NO-1NC)	
E1	同	FD E151-M2 1NO-1NC	FD E152-M2 1NO-1NC	FD E153-E11M2V9 1NO-1NC	FD E156-M2 1NO-1NC	
Max. speed		page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1	
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	
Travel diagrams		page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4	

${ }^{(1)}$ Positive opening only with actuator set to max. See page 27.

	Other rollers available. See on page 28	With stainless steel roller on request	With stainless steel roller on request	Rope switch for signalling
Contact type:				
$5 \quad \mathrm{R}$	FD 557-M2 Θ 1NO+1NC	FD 541-M2 Θ 1NO+1NC	FD 542-M2 Θ 1NO+1NC	FD 576-M2 1NO+1NC
6 L	FD 657-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	Bistable switch with single track lyra	Bistable switch with dual track lyra	FD 676-M2 1NO+1NC
7 L0	FD 757-M2 Θ 1NO+1NC		lever	FD 776-M2 1NO+1NC
9 L	FD 957-M2 Θ 2NC			FD 976-M2 2NO
10 L	FD 1057-M2 2NO			FD 1076-M2 2NC
11 R	FD 1157-M2 Θ 2NC	11)	FD 1176-M2 2NO
12 R	FD 1257-M2 2NO	$1 \times+$		FD 1276-M2 2NC
13 LV	FD 1357-M2 Θ 2NC	N	- +2	FD 1376-M2 2NO
14 LS	FD 1457-M2 Θ 2NC	2)	(0)	FD 1476-M2 2NO
15 LS	FD 1557-M2 2NO	1-	-	FD 1576-M2 2NC
16 L	FD 1657-M2 Θ 2NC	E(O)		
18 LA	FD 1857-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FD 1876-M2 1NO+1NC
20 L	FD 2057-M2 Θ 1NO+2NC	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	FD 2076-M2 2NO+1NC
21 L	FD 2157-M2 $\Theta 3 \mathrm{NC}$			FD 2176-M2 3NC
22 L	FD 2257-M2 Θ 2NO+1NC		$25^{\circ} \mathrm{S}$	FD 2276-M2 1NO+2NC
2 R	FD 257-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	$\mathrm{S}=$ mechanical switching point positive opening on contact 21-22 only	$S=$ mechanical switching point positive opening on contact 21-22 only	FD 276-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1 亩	FD E157-M2 1NO-1NC			
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4			page 238 - group 6

All measures in the drawings are in mm

Position switches with revolving lever without actuator

Contact type:		Regular head	Compact head	
	action action action apped action d action da and ed action endent action			
Contact blocks				
5	R	FD 538-M2 Θ 1NO+1NC	FD 558-M2 Θ 1NO+1NC	FD 540-M2 Θ 1NO+1NC
6	L	FD 638-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 658-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	Bistable switch
7	L0	FD 738-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FD 758-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
9	L	FD 938-M2 Θ 2NC	FD 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FD 1038-M2 2NO	FD 1058-M2 2NO	$25^{\circ} \mathrm{S}$
11	R	FD 1138-M2 Θ 2NC	FD 1158-M2 Θ 2NC	ical switching po
12	R	FD 1238-M2 2NO	FD 1258-M2 2NO	positive opening on contact 21-22 only
13	LV	FD 1338-M2 Θ 2NC	FD 1358-M2 Θ 2NC	
14	LS	FD 1438-M2 Θ 2NC	FD 1458-M2 Θ 2NC	
15	LS	FD 1538-M2 2NO	FD 1558-M2 2NO	
16	\square	FD 1638-M2 Θ 2NC		
18	LA	FD 1838-M2 Θ 1NO+1NC	FD 1858-M2 Θ 1NO+1NC	
20	L	FD 2038-M2 Θ 1NO+2NC	FD 2058-M2 Θ 1NO+2NC	
21	L	FD 2138-M2 $\Theta 3 \mathrm{NC}$	FD 2158-M2 $\Theta 3 \mathrm{NC}$	
22	L	FD 2238-M2 Θ 2NO+1NC	FD 2258-M2 Θ 2NO+1NC	
2	R	FD 238-M2 2x(1NO-1NC)	FD 258-M2 2x(1NO-1NC)	
E1	同	FD E138-M2 1NO-1NC	FD E158-M2 1NO-1NC	
Min. force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 238 - group 4	page 238 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All measures in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

Loose actuators			Flexible rod with pointed end			All measures in the drawings are in mm			
IMPORTANT: These loose actuch	ors can be used with items	eries FD, FP, FL, FC only.				Adjustable actuator with technopolymer roller		Adjustable fiber glass rod	
Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$							
			(20)						
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$	VF L34			VF L35 $\Theta{ }^{(1)(3)}$			VF L36 ${ }^{(3)}$
Single track lyra actuator	Dual track lyra actuator	Technopolymer roller, Ø 20 mm	Technopolymer roller, \varnothing 20 mm		Porcelain roller		Adjustable safety actuator with technopolymer roller		Technopolymer roller, \varnothing 20 mm
				30					
VF L41 Θ	VF L42 Θ	VF L51 Θ		VF L52 Θ	VF L53	$\Theta{ }^{\text {(2) }}$	VF L56 Θ		VF L57 Θ

[^0]Special loose actuators
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF L31-R24 Θ	VF L35-R24 ${ }^{(1)}{ }^{(1)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta^{(3)}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 $\underbrace{(1)(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\Theta{ }^{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

Selection diagram

product options
accessory sold separately

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

| | | |
| :--- | :--- | :--- | :--- |

Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever
$\mathbf{0 5}$	angled roller lever

Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

Threaded conduit entry

M2	M20×1.5 (standard)
	PG 13.5

Rollers

standard roller

R24 stainless steel, $\varnothing 20 \mathrm{~mm}$
(for actuators $02,05,31,35,51,52,56,57$)
R25 technopolymer, $\varnothing 35 \mathrm{~mm}$
R25 (for actuators 31, 35, 51, 52, 56, 57)
R5 rubber, $\varnothing 40 \mathrm{~mm}$
(for actuators 31, 35, 51, 52,56,57)
R26 rubber, $\varnothing 50 \mathrm{~mm}$
(for actuators $31,35,51,52,56,57$)
R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$
R27 (for actuators 35 e 36)

Pre-installed cable glands or connectors
without cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm
K27 cable gland for cables \varnothing 3 ... $\varnothing 7 \mathrm{~mm}$
K45 M12 plastic connector, 8 poles
K70 M12 plastic connector, 4 poles
Please contact our technical service for the complete list of possible combinations.

Main features

- Technopolymer housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:

One threaded conduit entry:
Protection degree:
M20×1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Max. actuation frequency:
Mechanical endurance:
Mounting position:
3600 operating cycles ${ }^{1} /$ hour
20 million operating cycles ${ }^{1}$
any
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanial inter not coded:
Nechanical interlock, not coded:
40,000,000 for NC contacts
type 1 according to EN ISO 14119
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact block $5,6,7,9,10,11,12,13,14,15,16,18$:
Contact block 2:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): Conditional short circuit current: Protection against short circuits: Pollution degree:		Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			le (A)	2		
			Direct c	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, 21, 22, 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($U_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental
requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

Characteristics approved by UL
Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 1NO+1NC	$\begin{gathered} \text { Contact block } 6 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } 7 \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	$\begin{aligned} & \text { Contact block } 12 \\ & 2 \mathrm{NO} \end{aligned}$	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 4 poles							
$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 3-4\end{array}$	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2\end{array}$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. $\text { NO } \quad 1-2$	Contacts Pin no. NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8								
NO 1-2								
Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 20 $2 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	Contact block 22 $1 \mathrm{NC}+2 \mathrm{NO}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	Contact block 34 2NC
M12 connector, 4 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 4 poles	M12 connector, 4 poles			
Contacts Pin no. NC (1 ${ }^{\circ}$) $1-2$	Contacts Pin no. NO (1°) $1-2$	Contacts Pin no. NC, lever at the right $1-2$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no NC \quad 3-4	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 1-2$
NC (20) 3 -4	NO (2) ${ }^{\circ}$ 3-4	$N C$, lever to the left $3-4$	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC $\quad 3-4$
				NO 7-8	NC 7-8	NO 7-8		

M12 connector, 4 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4

Contact blocks			With external rubber gasket		With external ruber gasket	
5	[FP 508-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 510-M2 Θ - ${ }^{\text {N }}$ O+1NC	FP 511-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 515-M2 $\odot{ }^{\text {1 }}$ NO+1NC
6	\square	FP 608-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 610-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 611-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 615-M2 Θ 1NO+1NC	
7	L0	FP 708-M2 $\odot 1$ 1 ${ }^{\text {O }}+1 \mathrm{NC}$	FP 710-M2 $\odot 1$ 1NO+1NC	FP 711-M2 \odot 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FP 715-M2 Θ 1NO+1NC	
9	\square	FP 908-M2 Θ 2NC	FP 910-M2 Θ 2NC	FP 911-M2 Θ 2NC	FP 915-M2 Θ 2NC	
10	\square	FP 1008-M2 2NO	FP 1010-M2 2NO	FP 1011-M2 2NO	FP 1015-M2 2NO	
11	R	FP 1108-M2 \oplus 2NC	FP 1110-M2 \oplus 2NC	FP 1111-M2 \oplus 2NC	FP 1115-M2 Θ 2NC	
12	R	FP 1208-M2 2NO	FP 1210-M2 2NO	FP 1211-M2 2NO	FP 1215-M2 2NO	
13	LV	FP 1308-M2 Θ 2NC	FP 1310-M2 Θ 2NC	FP 1311-M2 Θ 2NC	FP 1315-M2 Θ 2NC	
14	LS	FP 1408-M2 Θ 2NC	FP 1410-M2 Θ 2NC	FP 1411-M2 Θ 2NC	FP 1415-M2 Θ 2NC	
15	LS	FP 1508-M2 2NO	FP 1510-M2 2NO	FP 1511-M2 2NO	FP 1515-M2 2NO	
18	LA	FP 1808-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 1810-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FP 1811-M2 Θ - ${ }^{\text {NO }}+1 \mathrm{NC}$	FP 1815-M2 Θ 1 ${ }^{\text {NO+1NC }}$	
20	\square	FP 2008-M2 Θ 1NO+2NC	FP 2010-M2 Θ 1NO+2NC	FP 2011-M2 Θ 1NO+2NC	FP 2015-M2 Θ 1NO+2NC	
21	\square	FP 2108-M2 Θ 3NC	FP 2110-M2 Θ 3NC	FP 2111-M2 Θ 3NC	FP 2115-M2 \odot 3NC	
22	\square	FP 2208-M2 \bigodot 2NO+1NC	FP 2210-M2 Θ 2NO+1NC	FP 2211-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2215-M2 Θ 2NO+1NC	
	R	FP 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 210-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 211-M2 2x(1NO-1NC)	FP 215-M2 2x(1NO-1NC)	
E1	因	FP E108-M2 1NO-1NC	FP E110-M2 1NO-1NC	FP E111-M2 1NO-1NC	FP E115-M2 1NO-1NC	
Max. speed		page 237 - type 4	page 237 - type 4	page 237 - type 4	page 237 - type 2	
Min. force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	
Travel diagrams		page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238-group 1	

All measures in the drawings are in mm

		Ball, $\varnothing 8$ mm, stainless steel	Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	With external rubber gasket
Contact type: Contact blocks				
$5 \quad \mathbf{R}$	FP 516-M2 Θ 1NO+1NC	FP 518-M2 Θ 1NO+1NC	FP 519-M2 Θ 1NO+1NC	FP 520-M2 1NO+1NC
6 L	FP 616-M2 Θ 1NO+1NC	FP 618-M2 Θ 1NO+1NC	FP 619-M2 Θ 1NO+1NC	
7 L0	FP 716-M2 Θ 1NO+1NC	FP 718-M2 Θ 1NO+1NC	FP 719-M2 Θ 1NO+1NC	
9 L	FP 916-M2 Θ 2NC	FP 918-M2 Θ 2NC	FP 919-M2 Θ 2NC	
10 L	FP 1016-M2 2NO	FP 1018-M2 2NO	FP 1019-M2 2NO	FP 1020-M2 2NO
11 R	FP 1116-M2 Θ 2NC	FP 1118-M2 Θ 2NC	FP 1119-M2 Θ 2NC	
12 R	FP 1216-M2 2NO	FP 1218-M2 2NO	FP 1219-M2 2NO	
13 LV	FP 1316-M2 Θ 2NC	FP 1318-M2 Θ 2NC	FP 1319-M2 Θ 2NC	
14 LS	FP 1416-M2 Θ 2NC	FP 1418-M2 Θ 2NC	FP 1419-M2 $\Theta 2 N C$	
15 LS	FP 1516-M2 2NO	FP 1518-M2 2NO	FP 1519-M2 2NO	
18 LA	FP 1816-M2 Θ 1NO+1NC	FP 1818-M2 Θ 1NO+1NC	FP 1819-M2 Θ 1NO+1NC	FP 1820-M2 1NO+1NC
20 L	FP 2016-M2 Θ 1NO+2NC	FP 2018-M2 Θ 1NO+2NC	FP 2019-M2 Θ 1NO+2NC	FP 2020-M2 1NO+2NC
21 L	FP 2116-M2 $\Theta 3 \mathrm{NC}$	FP 2118-M2 $\Theta 3 \mathrm{NC}$	FP 2119-M2 $\Theta 3 N C$	FP 2120-M2 3NC
22 L	FP 2216-M2 Θ 2NO+1NC	FP 2218-M2 Θ 2NO+1NC	FP 2219-M2 Θ 2NO+1NC	FP 2220-M2 2NO+1NC
2 R	FP 216-M2 2x(1NO-1NC)	FP 218-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)	FP 219-M2 2x(1NO-1NC)	FP 220-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1 \quad 交	FP E116-M2 1NO-1NC	FP E118-M2 1NO-1NC	FP E119-M2 1NO-1NC	FP E120-M2 1NO-1NC
Max. speed	page 237 - type 2	page 237 - type 4	page 237 - type 4	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3

nt		Other rollers available. See on page 38	Other rollers available. See on page 38	Porcelain roller	Other rollers available. See on page 38
5	R	FP 551-M2 Θ 1NO+1NC	FP 552-M2 Θ 1NO+1NC	FP 553-E11M2V9 Θ 1NO+1NC	FP 556-M2 Θ 1NO+1NC
6	L	FP 651-M2 Θ 1NO+1NC	FP 652-M2 Θ 1NO+1NC	FP 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7	L0	FP 751-M2 $\Theta 1$ NO+1NC	FP 752-M2 Θ 1NO+1NC	FP 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9	L	FP 951-M2 Θ 2NC	FP 952-M2 Θ 2NC	FP 953-E11M2V9 Θ 2NC	FP 956-M2 Θ 2NC
10	L	FP 1051-M2 2NO	FP 1052-M2 2NO	FP 1053-E11M2V9 2NO	FP 1056-M2 2NO
11	R	FP 1151-M2 Θ 2NC	FP 1152-M2 Θ 2NC		FP 1156-M2 Θ 2NC
12	R	FP 1251-M2 2NO	FP 1252-M2 2NO	FP 1253-E11M2V9 2NO	FP 1256-M2 2NO
13	LV	FP 1351-M2 Θ 2NC	FP 1352-M2 Θ 2NC	FP 1353-E11M2V9 Θ 2NC	FP 1356-M2 Θ 2NC
14	LS	FP 1451-M2 Θ 2NC	FP 1452-M2 Θ 2NC	FP 1453-E11M2V9 Θ 2NC	FP 1456-M2 Θ 2NC
15	LS	FP 1551-M2 2NO	FP 1552-M2 2NO	FP 1553-E11M2V9 2NO	FP 1556-M2 2NO
16	LI				FP 1656-M2 Θ 2NC
18	LA	FP 1851-M2 Θ 1NO+1NC	FP 1852-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 1853-E11M2V9 Θ 1NO+1NC	FP 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FP 2051-M2 Θ 1NO+2NC	FP 2052-M2 Θ 1NO+2NC	FP 2053-E11M2V9 Θ 1NO+2NC	FP 2056-M2 Θ 1NO+2NC
21	L	FP 2151-M2 $\Theta 3 N \mathrm{C}$	FP 2152-M2 Θ 3NC	FP 2153-E11M2V9 $\Theta 3 N C$	FP 2156-M2 $\Theta 3 \mathrm{NC}$
22	L	FP 2251-M2 Θ 2NO+1NC	FP 2252-M2 Θ 2NO+1NC	FP 2253-E11M2V9 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2256-M2 Θ 2NO+1NC
2	R	FP 251-M2 2x(1NO-1NC)	FP 252-M2 2x(1NO-1NC)	FP 253-E11M2 2x(1NO-1NC)	FP 256-M2 2x(1NO-1NC)
E1	㒳	FP E151-M2 1NO-1NC	FP E152-M2 1NO-1NC	FP E153-E11M2V9 1NO-1NC	FP E156-M2 1NO-1NC
	speed	page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1
		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
	agrams	page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 37.

	Other rollers available. See on page 38	With stainless steel roller on request	With stainless steel roller on request	Rope switch for signalling
Contact type: \mathbf{R} = snap action \mathbf{L} = slow action LO = slow action overlapped LS = slow action shifted LV = slow action shifted and spaced $\mathbf{L I}$ = slow action independent LA = slow action closer 六 $=$ electronic PNP Contact blocks				
5 R	FP 557-M2 Θ 1NO+1NC	FP 541-M2 Θ 1NO+1NC	FP 542-M2 Θ 1NO+1NC	FP 576-M2 1NO+1NC
6 L	FP 657-M2 Θ 1NO+1NC	Bistable switch with single track lyra	Bistable switch with dual track lyra	FP 676-M2 1NO+1NC
7 LO	FP 757-M2 Θ 1NO+1NC	lever	lever	FP 776-M2 1NO+1NC
$9 \square$	FP 957-M2 Θ 2NC			FP 976-M2 2NO
10 L	FP 1057-M2 2NO			FP 1076-M2 2NC
11 R	FP 1157-M2 Θ 2NC)	*	FP 1176-M2 2NO
12 R	FP 1257-M2 2NO	2) 15	2) $)$	FP 1276-M2 2NC
13 LV	FP 1357-M2 Θ 2NC	\bigcirc	(0) -	FP 1376-M2 2NO
14 LS	FP 1457-M2 Θ 2NC	(${ }^{(3)}$	- 0	FP 1476-M2 2 NO
15 LS	FP 1557-M2 2NO	(1	FP 1576-M2 2NC
16 L	FP 1657-M2 Θ 2NC			
18 LA	FP 1857-M2 Θ 1NO+1NC			FP 1876-M2 1NO+1NC
20 L	FP 2057-M2 Θ 1NO+2NC	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	FP 2076-M2 2NO+1NC
21 L	FP 2157-M2 $\Theta 3 \mathrm{NC}$			FP 2176-M2 3NO
22 L	FP 2257-M2 Θ 2NO+1NC		$25^{\circ} \mathrm{S}$	FP 2276-M2 1NO+2NC
2 R	FP 257-M2 2x(1NO-1NC)	$S=$ mechanical switching point positive opening on contact 21-22 only	$\mathrm{S}=$ mechanical switching point positive opening on contact 21-22 only	FP 276-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)
E1 A	FP E157-M2 1NO-1NC			
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4			page 238-group 6

All measures in the drawings are in mm

Position switches with revolving lever without actuator

Contact type:		Regular head	Compact head	
5	R	FP 538-M2 Θ 1NO+1NC	FP 558-M2 Θ 1NO+1NC	FP 540-M2 Θ 1NO+1NC
6	L	FP 638-M2 Θ 1NO+1NC	FP 658-M2 Θ 1NO+1NC	Bistable switch
7	L0	FP 738-M2 Θ 1NO+1NC	FP 758-M2 Θ 1NO+1NC	
9	\square	FP 938-M2 Θ 2NC	FP 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FP 1038-M2 2NO	FP 1058-M2 2NO	
11	R	FP 1138-M2 Θ 2NC	FP 1158-M2 Θ 2NC	S = mechanical switching point
12	R	FP 1238-M2 2NO	FP 1258-M2 2NO	positive opening on contact 21-22 only
13	LV	FP 1338-M2 Θ 2NC	FP 1358-M2 Θ 2NC	
14	LS	FP 1438-M2 Θ 2NC	FP 1458-M2 Θ 2NC	
15	LS	FP 1538-M2 2NO	FP 1558-M2 2NO	
16	L	FP 1638-M2 Θ 2NC		
18	LA	FP 1838-M2 Θ 1NO+1NC	FP 1858-M2 Θ 1NO+1NC	
20	L	FP 2038-M2 Θ 1NO+2NC	FP 2058-M2 Θ 1NO+2NC	
21	L	FP 2138-M2 Θ 3NC	FP 2158-M2 Θ 3NC	
22	L	FP 2238-M2 Θ 2NO+1NC	FP 2258-M2 Θ 2NO+1NC	
2	R	FP 238-M2 2x(1NO-1NC)	FP 258-M2 2x(1NO-1NC)	
E1	同	FP E138-M2 1NO+1NC	FP E158-M2 1NO+1NC	
Min. force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 238 - group 4	page 238 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All measures in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

[^1]Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.
Stainless steel rollers, $\varnothing 20$ mm

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{(1)}{ }^{(3)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{\text {(3) }}$	VF L57-R24 Θ

Technopolymer rollers, Ø 35 mm

VF L31-R25 $\Theta{ }^{(4)}$	VF L35-R25 Θ (1) (3)	VF L51-R25 $\Theta{ }^{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{\text {(3) }}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 ${ }^{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 Θ (4)	VF L35-R26 $\Theta{ }^{(1)}{ }^{(3)}$	VF L51-R26 $\Theta{ }^{\text {(4) }}$	VF L52-R26 $\Theta{ }^{\text {(4) }}$	VF L56-R26 $\Theta{ }^{\text {(3) }}$	VF L57-R26 Θ (4)

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L35-R27 $\Theta{ }^{(1)(3)}$	VF L56-R27 $\Theta{ }^{\text {(3) }}$

Selection diagram

Code structure

 Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Contact type
silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

Threaded conduit
entries
M2 M20×1.5 (standard)
PG 13.5

Main features

- Metal housing, three conduit entries
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Metal housing, baked powder coating
Three threaded conduit entries:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact block 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18:

Contact block 2:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1, VDE 0660-206.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage $\left(\mathrm{U}_{\text {imp }}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:		Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ Ue (V) 24			
			le (A)	2		
			Direct	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac

400 Vac (for contact blocks 2, 11, 12, 20, 21, $22,33,34)$
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($U_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
$21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 (720 VA, $120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG $12 / 14$. Terminal tightening torque of 7.1 lb in $(0.8 \mathrm{Nm})$.
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 7 \\ 1 N O+1 N C \end{gathered}$	Contact block 9 2NC	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 5 poles							
Contacts Pin no. NO $\quad 3-4$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no NC $\quad 1-2$	Contacts Pin no NC 1-2	Contacts Pin no NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO $\quad 1-2$	Contacts Pin no NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2) ${ }^{\circ} \mathrm{3}-4$
NC 7-8	ground 5							
NO 1-2								

Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	$\begin{gathered} \text { Contact block } 18 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 N O \end{gathered}$	Contact block 21 3NC	$\begin{gathered} \text { Contact block } 22 \\ 1 \mathrm{NC}+2 \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { Contact block } 33 \\ 1 \mathrm{NC}+1 \mathrm{NO} \end{gathered}$	Contact block 34 2NC
M12 connector, 5 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 5 poles	M12 connector, 5 poles			
Contacts Pin no. NC (1) $\quad 1-2$	Contacts Pin no. $N O\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC, lever at the right 1-2	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$
NC (2°) $\quad 3-4$	NO (29) 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO 7-8	ground	ground
				ground 1	ground 1	ground 1		

Contact block E1 PNP

M12 connector, 5 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

Contact blocks			With external rubber gasket		With external rubber gasket
5	R	FL 508-M2 Θ 1 ${ }^{1 \mathrm{O}+1 \mathrm{NC} \text {. }}$	FL 510-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 511-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 515-M2 Θ (${ }^{1 N O+1 N C}$
6	\square	FL 608-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 610-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 611-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 615-M2 Θ 1NO+1NC
7	L0	FL 708-M2 $\odot 1$ 1NO+1NC	FL 710-M2 $\odot 1$ 1NO+1NC	FL 711-M2 $\odot 1 \mathrm{NO}+1 \mathrm{NC}$	FL 715-M2 Θ 1NO+1NC
9	\square	FL 908-M2 Θ 2NC	FL 910-M2 Θ 2NC	FL 911-M2 Θ 2NC	FL 915-M2 \bigodot 2NC
10	\square	FL 1008-M2 2NO	FL 1010-M2 2NO	FL 1011-M2 2NO	FL 1015-M2 2NO
11	R	FL 1108-M2 ¢ $^{2 N C}$	FL 1110-M2 $\underbrace{2 N C}$	FL 1111-M2 \oplus 2NC	FL 1115-M2 Θ 2NC
12	R	FL 1208-M2 2NO	FL 1210-M2 2NO	FL 1211-M2 2NO	FL 1215-M2 2NO
13	LV	FL 1308-M2 Θ 2NC	FL 1310-M2 Θ 2NC	FL 1311-M2 Θ 2NC	FL 1315-M2 Θ 2NC
14	LS	FL 1408-M2 Θ 2NC	FL 1410-M2 Θ 2NC	FL 1411-M2 Θ 2NC	FL 1415-M2 Θ 2NC
15	LS	FL 1508-M2 2NO	FL 1510-M2 2NO	FL 1511-M2 2NO	FL 1515-M2 2NO
18	LA	FL 1808-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 1810-M2 \odot 1NO+1NC $^{\text {d }}$	FL 1811-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 1815-M2 Θ 1 ${ }^{\text {NO}+1 N C}$
20	\square	FL 2008-M2 Θ 1NO+2NC	FL 2010-M2 Θ 1NO+2NC	FL 2011-M2 Θ 1NO+2NC	FL 2015-M2 Θ 1NO+2NC
21	\square	FL 2108-M2 Θ 3NC	FL 2110-M2 Θ 3NC	FL 2111-M2 Θ 3NC	FL 2115-M2 ¢ $^{\text {3NC }}$
22	\square	FL 2208-M2 Θ 2NO+1NC	FL 2210-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2211-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2215-M2 Θ 2NO+1NC
2	R	FL 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 210-M2 2x(1NO-1NC)	FL 211-M2 2x(1NO-1NC)	FL 215-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1	因	FL E108-M2 1NO-1NC	FL E110-M2 1NO-1NC	FL E111-M2 1NO-1NC	FL E115-M2 1NO-1NC
Max. speed		page 237 - type 4	page 237 - type 4	page 237 - type 4	page 237 - type 2
Min. force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams		page 238 - group 1			

All measures in the drawings are in mm

		Ball, $\varnothing 8$ mm, stainless steel	Ball, $\varnothing 12.7 \mathrm{~mm}$, stainless steel	With external rubber gasket
Contact type: = snap action = slow action LO = slow action LS = slow action shifted LV $=$ slow action shifted and shifted and spaced LI = slow action independent LA = slow action closer =electronic PNP Contact blocks				
5 R	FL 516-M2 Θ 1NO+1NC	FL 518-M2 Θ 1NO+1NC	FL 519-M2 Θ 1NO+1NC	FL 520-M2 1NO+1NC
6 L	FL 616-M2 Θ 1NO+1NC	FL 618-M2 Θ 1NO+1NC	FL 619-M2 Θ 1NO+1NC	
7 L0	FL 716-M2 Θ 1NO+1NC	FL 718-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 719-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
9 L	FL 916-M2 Θ 2NC	FL 918-M2 Θ 2NC	FL 919-M2 Θ 2NC	
10 L	FL 1016-M2 2NO	FL 1018-M2 2NO	FL 1019-M2 2NO	FL 1020-M2 2NO
11 R	FL 1116-M2 Θ 2NC	FL 1118-M2 Θ 2NC	FL 1119-M2 Θ 2NC	
12 R	FL 1216-M2 2NO	FL 1218-M2 2NO	FL 1219-M2 2NO	
13 LV	FL 1316-M2 Θ 2NC	FL 1318-M2 Θ 2NC	FL 1319-M2 Θ 2NC	
14 LS	FL 1416-M2 Θ 2NC	FL 1418-M2 Θ 2NC	FL 1419-M2 Θ 2NC	
15 LS	FL 1516-M2 2NO	FL 1518-M2 2NO	FL 1519-M2 2NO	
18 LA	FL 1816-M2 Θ 1NO+1NC	FL 1818-M2 Θ 1NO+1NC	FL 1819-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 1820-M2 1NO+1NC
20 L	FL 2016-M2 Θ 1NO+2NC	FL 2018-M2 Θ 1NO+2NC	FL 2019-M2 Θ 1NO+2NC	FL 2020-M2 1NO+2NC
21 L	FL 2116-M2 Θ 3NC	FL 2118-M2 $\Theta 3 \mathrm{NC}$	FL 2119-M2 $\Theta 3 \mathrm{NC}$	FL 2120-M2 3NC
22 L	FL 2216-M2 Θ 2NO+1NC	FL 2218-M2 Θ 2NO+1NC	FL 2219-M2 Θ 2NO+1NC	FL 2220-M2 2NO+1NC
2 R	FL 216-M2 2x(1NO-1NC)	FL 218-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 219-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FL 220-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)
E1 \quad 亩	FL E116-M2 1NO-1NC	FL E118-M2 1NO-1NC	FL E119-M2 1NO-1NC	FL E120-M2 1NO-1NC
Max. speed	page 237 - type 2	page 237 - type 4	page 237 - type 4	$1 \mathrm{~m} / \mathrm{s}$
Min. force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 1	page 238 - group 1	page 238 - group 1	page 238 - group 3

Contact blocks		Other rollers available. See on page 48	Other rollers available. See on page 48	Porcelain roller	Other rollers available. See on page
5	R	FL 551-M2 Θ 1NO+1NC	FL 552-M2 Θ 1NO+1NC	FL 553-E11M2V9 Θ 1NO+1NC	FL 556-M2 Θ 1NO+1NC
6	L	FL 651-M2 Θ 1NO+1NC	FL 652-M2 Θ 1NO+1NC	FL 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7	LO	FL 751-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 752-M2 Θ 1NO+1NC	FL 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9	L	FL 951-M2 Θ 2NC	FL 952-M2 Θ 2NC	FL 953-E11M2V9 Θ 2NC	FL 956-M2 Θ 2NC
10	L	FL 1051-M2 2NO	FL 1052-M2 2NO	FL 1053-E11M2V9 2NO	FL 1056-M2 2NO
11	R	FL 1151-M2 Θ 2NC	FL 1152-M2 Θ 2NC		FL 1156-M2 Θ 2NC
12	R	FL 1251-M2 2NO	FL 1252-M2 2NO	FL 1253-E11M2V9 2NO	FL 1256-M2 2NO
13	LV	FL 1351-M2 Θ 2NC	FL 1352-M2 Θ 2NC	FL 1353-E11M2V9 Θ 2NC	FL 1356-M2 Θ 2NC
14	LS	FL 1451-M2 Θ 2NC	FL 1452-M2 Θ 2NC	FL 1453-E11M2V9 $\Theta 2 N C$	FL 1456-M2 Θ 2NC
15	LS	FL 1551-M2 2NO	FL 1552-M2 2NO	FL 1553-E11M2V9 2NO	FL 1556-M2 2NO
16	LI				FL 1656-M2 Θ 2NC
18	LA	FL 1851-M2 Θ 1NO+1NC	FL 1852-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FL 1853-E11M2V9 Θ 1NO+1NC	FL 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FL 2051-M2 Θ 1NO+2NC	FL 2052-M2 Θ 1NO+2NC	FL 2053-E11M2V9 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2056-M2 $\Theta 1$ NO+2NC
21	L	FL 2151-M2 $\Theta 3 \mathrm{NC}$	FL 2152-M2 $\Theta 3 \mathrm{NC}$	FL 2153-E11M2V9 $\Theta 3$ NC	FL 2156-M2 $\Theta 3 \mathrm{NC}$
22	L	FL 2251-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2252-M2 Θ 2NO+1NC	FL 2253-E11M2V9 $\Theta 2 N O+1 \mathrm{NC}$	FL 2256-M2 Θ 2NO+1NC
2	R	FL 251-M2 2x(1NO-1NC)	FL 252-M2 2x(1NO-1NC)	FL 253-E11M2 2x(1NO-1NC)	FL 256-M2 2x(1NO-1NC)
E1	同	FL E151-M2 1NO-1NC	FL E152-M2 1NO-1NC	FL E153-E11M2V9 1NO-1NC	FL E156-M2 1NO-1NC
Max. speed		page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1
Min. force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 47.

	Other rollers available. See on page 48	With stainless steel roller on request	With stainless steel roller on request	Rope switch for signall
Contact type:				
5 R	FL 557-M2 Θ 1NO+1NC	FL 541-M2 Θ 1NO+1NC	FL 542-M2 Θ 1NO+1NC	FL 576-M2 1NO+1NC
6 L	FL 657-M2 Θ 1NO+1NC	Bistable switch with single track lyra	Bistable switch with dual track lyra	FL 676-M2 1NO+1NC
7 L0	FL 757-M2 Θ 1NO+1NC	lever	lever	FL 776-M2 1NO+1NC
$9 \square$	FL 957-M2 Θ 2NC			FL 976-M2 2NO
10 L	FL 1057-M2 2NO			FL 1076-M2 2NC
11 R	FL 1157-M2 Θ 2NC			FL 1176-M2 2NO
12 R	FL 1257-M2 2NO	1		FL 1276-M2 2NC
13 LV	FL 1357-M2 Θ 2NC	-	(o)d -	FL 1376-M2 2NO
14 LS	FL 1457-M2 Θ 2NC)		FL 1476-M2 2NO
15 LS	FL 1557-M2 2NO	1 (1)		FL 1576-M2 2NC
16 L	FL 1657-M2 Θ 2NC	,	,	
18 LA	FL 1857-M2 Θ 1NO+1NC		λ	FL 1876-M2 1NO+1NC
20 L	FL 2057-M2 Θ 1NO+2NC			FL 2076-M2 2NO+1NC
21 L	FL 2157-M2 $\Theta 3 \mathrm{NC}$			FL 2176-M2 3NO
22 L	FL 2257-M2 Θ 2NO+1NC			FL 2276-M2 1NO+2NC
2 R	FL 257-M2 2x(1NO-1NC)	$S=$ mechanical switching point	S = mechanical switching point	FL 276-M2 2x(1NO-1NC)
E1 大	FL E157-M2 1NO-1NC		positive opening on contact 21-22 only	
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4			page 238 - group 6

All measures in the drawings are in mm

Position switches with revolving lever without actuator

Contact type:$\left.\left.\begin{array}{c\|c} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ \text { overlapped } \end{array}\right\} \begin{array}{cl} \mathbf{L S} & =\text { slow action } \\ \text { shifted } \end{array}\right\}$		Regular head	Compact head	
5	R	FL 538-M2 Θ 1NO+1NC	FL 558-M2 Θ 1NO+1NC	FL 540-M2 Θ 1NO+1NC
6	L	FL 638-M2 Θ 1NO+1NC	FL 658-M2 Θ 1NO+1NC	Bistable swit
7	L0	FL 738-M2 Θ 1NO+1NC	FL 758-M2 Θ 1NO+1NC	
9	L	FL 938-M2 Θ 2NC	FL 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FL 1038-M2 2NO	FL 1058-M2 2NO	$25^{\circ} \mathrm{S}$
11	R	FL 1138-M2 Θ 2NC	FL 1158-M2 Θ 2NC	$\mathrm{S}=$ mechanical switching point
12	R	FL 1238-M2 2NO	FL 1258-M2 2NO	positive opening on contact 21-22 only
13	LV	FL 1338-M2 Θ 2NC	FL 1358-M2 Θ 2NC	
14	LS	FL 1438-M2 Θ 2NC	FL 1458-M2 Θ 2NC	
15	LS	FL 1538-M2 2NO	FL 1558-M2 2NO	
16	L	FL 1638-M2 Θ 2NC		
18	LA	FL 1838-M2 Θ 1NO+1NC	FL 1858-M2 Θ 1NO+1NC	
20	L	FL 2038-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2058-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	
21	L	FL 2138-M2 $\Theta 3 \mathrm{NC}$	FL 2158-M2 $\Theta 3 N C$	
22	L	FL 2238-M2 Θ 2NO+1NC	FL 2258-M2 Θ 2NO+1NC	
2	R	FL 238-M2 2x(1NO-1NC)	FL 258-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	
E1	同	FL E138-M2 1NO-1NC	FL E158-M2 1NO-1NC	
Min. force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 238 - group 4	page 238 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All measures in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

All measures in the drawings are in mm

Loose actuators All measures in the drawings are in mm									
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.									
Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$		Flexible rod with pointed end		Adjustable actuator with technopolymer roller		Adjustable fiber glass rod	
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$		VF L34		VF L35 $\Theta{ }^{(1)(3)}$		VF L36 ${ }^{(3)}$	
Single track lyra actuator	Dual track lyra actuator	Technopolymer roller, \varnothing 20 mm	Technopolymer roller, \varnothing 20 mm		Porcelain roller		Adjustable safety actuator with technopolymer roller	Technopolymer roller, \varnothing20 mm	
				(Q)					
VF L41 Θ	VF L42 Θ	VF L51 Θ		VF L52 Θ	VF L53	$\Theta{ }^{(2)}$	VF L56 $\Theta{ }^{(3)}$		VF L57 Θ

[^2]Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{(1)}$ (3)	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{(3)}$	VF L57-R24 Θ

Technopolymer rollers, Ø 35 mm

VF L31-R25 $\Theta{ }^{(4)}$	VF L35-R25 ${ }^{(1)}{ }^{(3)}$	VF L51-R25 $\underbrace{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{\text {(3) }}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 ${ }^{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\Theta{ }^{(4)}$	VF L35-R26 ${ }^{(1)}{ }^{(3)}$	VF L51-R26 $\Theta{ }^{\text {(4) }}$	VF L52-R26 $\Theta{ }^{(4)}$	VF L56-R26 $\underbrace{(3)}$	VF L57-R26 $\Theta{ }^{\text {(4) }}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L35-R27 $\Theta{ }^{(1)(3)}$	VF L56-R27 $\underbrace{(3)}$

Selection diagram

CONDUIT ENTRY

Threaded conduit entry	
M2	M20x1.5 (standard)
	PG 11

With cable gland	
K23	
	for cables
	$\varnothing 6 \ldots \varnothing 12 \mathrm{~mm}$
K27	for cables
	$\varnothing 3 \ldots \varnothing 7 \mathrm{~mm}$

With M12 metal connector | K50 | 5 poles, bottom |
| :--- | :--- |

Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Contact type

silver contacts (standard)
silver contacts with $1 \mu \mathrm{~m}$ gold coating (not for contact block 3)

Threaded conduit entry
M2 M20x1.5 (standard)
PG11

Rollers

standard roller
stainless steel, $\varnothing 20 \mathrm{~mm}$
(for actuators $02,05,31,35,51,52,56,57$)
225 technopolymer, Ø 35 mm
(for actuators 31, 35, 51, 52,56,57)
R5 rubber, $\varnothing 40 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R26 rubber, $\varnothing 50 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$
(for actuators 35 e 36)

Pre-installed cable glands
without cable gland (standard)
K23 cable gland for cables Ø 6...Ø 12 mm
K27 cable gland for cables $\varnothing 3 \ldots \varnothing 7$ mm
K50 M12 metal connector, 5 poles
Please contact our technical service for the complete list of possible combinations.

Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 3 contact blocks available
- 26 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Metal housing, baked powder coating
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 according to EN 60529
with cable gland having equal
or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$B_{10 d}$:
Mechanical interlock, not coded:
Tightening torques for installation:
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 33, 34:
Contact block 3:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	
EG605	
UL approval:	
C131787	
ECC approval:	
EAC approval:	RU C-IT ДM94.B.01024

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 238. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (lth): Rated insulation voltage (Ui): Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:	$\begin{aligned} & 10 \mathrm{~A} \\ & 500 \mathrm{Vac} 600 \mathrm{Vdc} \\ & 400 \text { Vac } 500 \mathrm{Vdc} \text { (contact blocks 33, 34) } \\ & 6 \mathrm{kV} \\ & 4 \mathrm{kV} \text { (contact blocks 33, 34) } \\ & 1000 \mathrm{~A} \text { according to EN 60947-5-1 } \\ & \text { type aM fuse } 10 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Direct	ent:		
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	nt: D		
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4

Characteristics approved by IMO

Rated insulation voltage (Ui):
500 Vac
400 Vac (for contact blocks 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage (U_{in}
6 kV
4 kV (for contact blocks 33, 34
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Zb}, \mathrm{Y}+\mathrm{Y}$
Positive opening of contacts on contact blocks 33, 34
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.
Please contact our technical service for the list of approved products.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)
A600 ($720 \mathrm{VA}, 120 \ldots 600 \mathrm{Vac}$)
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).
n conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 3 1NC-1NO	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 34 \\ 2 N C \end{gathered}$
M12 connector, 5 poles	M12 connector, 5 poles	M12 connector, 5 poles
Contacts Pin no.	Contacts Pin no.	Contacts Pin no.
NC 1-2	NC 1-2	NC 1-2
NO 3-4	NO 3-4	NC 3-4
ground 5	ground 5	ground 5

		With external rubber gasket		With external rubber gasket
Contact blocks				
3 R	FC 308-M2 1NO-1NC	FC 310-M2 1NO-1NC	FC 311-M2 1NO-1NC	FC 315-M2 1NO-1NC
33 L	FC 3308-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3310-M2 Θ 1NO+1NC	FC 3311-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3315-M2 Θ 1NO+1NC
34 L	FC 3408-M2 Θ 2NC	FC 3410-M2 Θ 2NC	FC 3411-M2 Θ 2NC	FC 3415-M2 Θ 2NC
Max. speed	page 237 - type 4	page 237 - type 4	page 237 - type 4	page 237 - type 2
Min. force	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 238-group 1	page 238-group 1	page 238-group 1	page 238 - group 1

(

	Square rod, $3 \times 3 \mathrm{~mm}$		Other rollers available. See on page 56	Fiber glass rod
3 R	FC 333-M2 1NO-1NC	FC 334-M2 1NO-1NC	FC 335-M2 1NO-1NC	FC 336-M2 1NO-1NC
33 L	FC 3333-M2 1NO+1NC	FC 3334-M2 1NO+1NC	FC 3335-M2 $\Theta{ }^{\text {(1) }} 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3336-M2 1NO+1NC
34 L	FC 3433-M2 2NC	FC 3434-M2 2NC	FC 3435-M2 $\Theta{ }^{(1)} 2 \mathrm{NC}$	FC 3436-M2 2NC
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 237 - type 1	$1.5 \mathrm{~m} / \mathrm{s}$
Min. force	0.09 Nm	0.09 Nm	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.09 Nm
Travel diagrams	page 238 - group 4			

	Other rollers available. See on page 56	Other rollers available. See on page 56	Porcelain roller	Other rollers available. See on page 56
ntac				
3 R	FC 351-M2 1NO-1NC	FC 352-M2 1NO-1NC	FC 353-E11M2 1NO-1NC	FC 356-M2 1NO-1NC
33 L	FC 3351-M2 Θ 1NO+1NC	FC 3352-M2 Θ 1NO+1NC	FC 3353-E11M2V9 Θ 1NO+1NC	FC 3356-M2 Θ 1NO+1NC
34 L	FC 3451-M2 Θ 2NC	FC 3452-M2 Θ 2NC	FC 3453-E11M2V9 Θ 2NC	FC 3456-M2 Θ 2NC
Max. speed	page 237 - type 1	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 237 - type 1
Min. force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.02 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 238 - group 4	page 238 - group 4	page 238 - group 5	page 238 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 55 .

Contact type:	Other rollers available. See on page 56	Rope switch for signalling
$\begin{aligned} & \mid=\text { snap action } \\ & \mathbf{L}=\text { slow action } \end{aligned}$		
3 R	FC 357-M2 1NO-1NC	FC 376-M2 1NO-1NC
33 L	FC 3357-M2 Θ 1NO+1NC	FC 3376-M2 1NO+1NC
34 L	FC 3457-M2 Θ 2NC	FC 3476-M2 2NC
Max. speed	page 237 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$
Min. force	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 238 - group 4	page 238 - group 6

All measures in the drawings are in mm
Position switches with revolving lever without actuator

	Regular head	Compact head
Contact blocks		
3 R	FC 338-M2 1NO-1NC	FC 358-M2 1NO-1NC
33 L	FC 3338-M2 Θ 1NO+1NC	FC 3358-M2 Θ 1NO+1NC
34 L	FC 3438-M2 Θ 2NC	FC 3458-M2 Θ 2NC
Min. force	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 238 - group 4	page 238 - group 4

All measures in the drawings are in mm
Loose actuators

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ aside the product code.
For more information about safety applications see details on page 235.

IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.

Technopolymer roller Ø 20 mm	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable fiber glass rod
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$	VF L34	VF L35 Θ (1) (3)	VF L36 ${ }^{(3)}$
Technopolymer roller $\varnothing 20$ mm	Technopolymer roller Ø 20 mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller Ø 20 mm	
VF L51 Θ	VF L52 Θ	VF L53 $\Theta{ }^{(2)}$	VF L56 $\Theta{ }^{(3)}$	VF L57 Θ	

Special loose actuators
IMPORTANT: These loose actuators can be used with items of series FD, FP, FL, FC only.
Stainless steel rollers, $\varnothing 20$ mm

VF L31-R24 Θ	VF L35-R24 $\Theta^{(1)}{ }^{(3)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{\text {(3) }}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 $\underbrace{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 $\Theta{ }^{(4)}$

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\Theta{ }^{(4)}$	VF L35-R26 $\underbrace{(1)}{ }^{(3)}$	VF L51-R26 Θ (4)	VF L52-R26 ${ }^{(4)}$	VF L56-R26 ${ }^{(3)}$	VF L57-R26 Θ (4)

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$
VF L35-R27 \rightarrow (1)(3)

[^3]
[^0]: - ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
 ${ }^{(2)}$ The position switch obtained by assembling switch FD $\bullet 58-\mathrm{M} 2$ (e.g. FD 558-M2, FD $658-\mathrm{M} 2 \ldots$) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FD $\bullet 53-\mathrm{E} 11 \mathrm{M} 2 \mathrm{~V} 9$ (e.g. FD 553-E11M2V9, FD 653-E11M2V9...).
 ${ }^{(3)}$ If installed with switch FD $\bullet 58-\mathrm{M} 2$ (e.g. FC 558-M2, FD 658-M2 ...) the actuator could mechanically interfere with the housing of the switch.
 The interference could happen or not according to the actuator and the head fixing position.
 ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.

[^1]: ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
 ${ }^{(2)}$ The position switch obtained by assembling switch FP •58-M2 (e.g. FP 558-M2, FP 658-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FP •53-E11M2V9 (e.g. FP 553-E11M2V9, FP 653-E11M2V9...).
 ${ }^{(3)}$ If installed with switch FP $\bullet 58-\mathrm{M} 2($ e.g. FP 558-M2, FP $658-\mathrm{M} 2 \ldots$) the actuator could mechanically interfere with the housing of the switch.
 The interference could happen or not according to the actuator and the head fixing position.
 ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.

[^2]: ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
 ${ }^{(2)}$ The position switch obtained by assembling switch FL $\bullet 58-\mathrm{M} 2$ (e.g. FL 558-M2, FL 658-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FL •53-E11M2V9 (e.g. FL 553-E11M2V9, FL 653-E11M2V9...).
 ${ }^{(3)}$ If installed with switch FL $\bullet 58-\mathrm{M} 2($ e.g. FL 558-M2, FL $658-\mathrm{M} 2 \ldots$) the actuator could mechanically interfere with the housing of the switch.
 The interference could happen or not according to the actuator and the head fixing position.
 ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.

[^3]: ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in figure beside. If you need an adjustable lever for safety applications, use the adjustable safety lever VF L56.
 ${ }^{(2)}$ The position switch obtained by assembling switch FC •58-M2 (e.g. FC 358-M2, FC 3358-M2 ...) with actuator VF L53 will not present the same
 travel diagrams and actuating forces as switch FC $\bullet 53-E 11 \mathrm{M} 2$ (e.g. FC 353-E11M2, FC 3353-E11M2V9...).
 ${ }^{(3)}$ If installed with switch FC $\bullet 58-\mathrm{M} 2$ (e.g. FC 358-M2, FC $3358-\mathrm{M} 2 \ldots$) the actuator could mechanically interfere with the housing of the switch. $\%$ The interference could happen or not according to the actuator and the head fixing position.
 ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will mechanically interfere with the switch head.

